ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal Constraints

316   0   0.0 ( 0 )
 نشر من قبل Shushman Choudhury
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of dynamically allocating tasks to multiple agents under time window constraints and task completion uncertainty. Our objective is to minimize the number of unsuccessful tasks at the end of the operation horizon. We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination and addresses them in a hierarchical manner. The lower layer computes policies for individual agents using dynamic programming with tree search, and the upper layer resolves conflicts in individual plans to obtain a valid multi-agent allocation. Our algorithm, Stochastic Conflict-Based Allocation (SCoBA), is optimal in expectation and complete under some reasonable assumptions. In practice, SCoBA is computationally efficient enough to interleave planning and execution online. On the metric of successful task completion, SCoBA consistently outperforms a number of baseline methods and shows strong competitive performance against an oracle with complete lookahead. It also scales well with the number of tasks and agents. We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.



قيم البحث

اقرأ أيضاً

This paper investigates the task coordination of multi-robot where each robot has a private individual temporal logic task specification; and also has to jointly satisfy a globally given collaborative temporal logic task specification. To efficiently generate feasible and optimized task execution plans for the robots, we propose a hierarchical multi-robot temporal task planning framework, in which a central server allocates the collaborative tasks to the robots, and then individual robots can independently synthesize their task execution plans in a decentralized manner. Furthermore, we propose an execution plan adjusting mechanism that allows the robots to iteratively modify their execution plans via privacy-preserved inter-agent communication, to improve the expected actual execution performance by reducing waiting time in collaborations for the robots. The correctness and efficiency of the proposed method are analyzed and also verified by extensive simulation experiments.
This paper addresses task-allocation problems with uncertainty in situational awareness for distributed autonomous robots (DARs). The uncertainty propagation over a task-allocation process is done by using the Unscented transform that uses the Sigma- Point sampling mechanism. It has great potential to be employed for generic task-allocation schemes, in the sense that there is no need to modify an existing task-allocation method that has been developed without considering the uncertainty in the situational awareness. The proposed framework was tested in a simulated environment where the decision-maker needs to determine an optimal allocation of multiple locations assigned to multiple mobile flying robots whose locations come as random variables of known mean and covariance. The simulation result shows that the proposed stochastic task allocation approach generates an assignment with 30% less overall cost than the one without considering the uncertainty.
This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata.
This paper considers the problem of multi-robot safe mission planning in uncertain dynamic environments. This problem arises in several applications including safety-critical exploration, surveillance, and emergency rescue missions. Computation of a multi-robot optimal control policy is challenging not only because of the complexity of incorporating dynamic uncertainties while planning, but also because of the exponential growth in problem size as a function of number of robots. Leveraging recent works obtaining a tractable safety maximizing plan for a single robot, we propose a scalable two-stage framework to solve the problem at hand. Specifically, the problem is split into a low-level single-agent planning problem and a high-level task allocation problem. The low-level problem uses an efficient approximation of stochastic reachability for a Markov decision process to handle the dynamic uncertainty. The task allocation, on the other hand, is solved using polynomial-time forward and reverse greedy heuristics. The multiplicative safety objective of our multi-robot safe planning problem allows decoupling in order to implement the greedy heuristics through a distributed auction-based approach. Moreover, by leveraging the properties of this safety objective function, we ensure provable performance bounds on the safety of the approximate solutions proposed by these two heuristics.
In the context of heterogeneous multi-robot teams deployed for executing multiple tasks, this paper develops an energy-aware framework for allocating tasks to robots in an online fashion. With a primary focus on long-duration autonomy applications, w e opt for a survivability-focused approach. Towards this end, the task prioritization and execution -- through which the allocation of tasks to robots is effectively realized -- are encoded as constraints within an optimization problem aimed at minimizing the energy consumed by the robots at each point in time. In this context, an allocation is interpreted as a prioritization of a task over all others by each of the robots. Furthermore, we present a novel framework to represent the heterogeneous capabilities of the robots, by distinguishing between the features available on the robots, and the capabilities enabled by these features. By embedding these descriptions within the optimization problem, we make the framework resilient to situations where environmental conditions make certain features unsuitable to support a capability and when component failures on the robots occur. We demonstrate the efficacy and resilience of the proposed approach in a variety of use-case scenarios, consisting of simulations and real robot experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا