ترغب بنشر مسار تعليمي؟ اضغط هنا

The Maximum Number of Paths of Length Three in a Planar Graph

79   0   0.0 ( 0 )
 نشر من قبل Casey Tompkins
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f(n,H)$ denote the maximum number of copies of $H$ possible in an $n$-vertex planar graph. The function $f(n,H)$ has been determined when $H$ is a cycle of length $3$ or $4$ by Hakimi and Schmeichel and when $H$ is a complete bipartite graph with smaller part of size 1 or 2 by Alon and Caro. We determine $f(n,H)$ exactly in the case when $H$ is a path of length 3.

قيم البحث

اقرأ أيضاً

Let $f(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. The order of magnitude of $f(n,P_k)$, where $P_k$ is a path of length $k$, is $n^{{lfloor{frac{k}{2}}rfloor}+1}$. In this paper we determine the asymptotic value o f $f(n,P_4)$ and give conjectures for longer paths.
Finding the maximum number of induced cycles of length $k$ in a graph on $n$ vertices has been one of the most intriguing open problems of Extremal Graph Theory. Recently Balogh, Hu, Lidick{y} and Pfender answered the question in the case $k=5$. In t his paper we determine precisely, for all sufficiently large $n$, the maximum number of induced $5$-cycles that an $n$-vertex planar graph can contain.
For a fixed planar graph $H$, let $operatorname{mathbf{N}}_{mathcal{P}}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In the case when $H$ is a cycle, the asymptotic value of $operatorname{mathbf{N}}_{mathcal{P}}(n,C _m)$ is currently known for $min{3,4,5,6,8}$. In this note, we extend this list by establishing $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{10})sim(n/5)^5$ and $operatorname{mathbf{N}}_{mathcal{P}}(n,C_{12})sim(n/6)^6$. We prove this by answering the following question for $min{5,6}$, which is interesting in its own right: which probability mass $mu$ on the edges of some clique maximizes the probability that $m$ independent samples from $mu$ form an $m$-cycle?
Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only con jectured by the authors about the minimum number of cycles of length 4 for maximal planar graphs with the remaining small vertex numbers. In this note we confirm their conjecture.
The global forcing number of a graph G is the minimal cardinality of an edge subset discriminating all perfect matchings of G, denoted by gf(G). For any perfect matching M of G, the minimal cardinality of an edge subset S in E(G)-M such that G-S has a unique perfect matching is called the anti-forcing number of M,denoted by af(G, M). The maximum anti-forcing number of G among all perfect matchings is denoted by Af(G). It is known that the maximum anti-forcing number of a hexagonal system equals the famous Fries number. We are interested in some comparisons between the global forcing number and the maximum anti-forcing number of a graph. For a bipartite graph G, we show that gf(G)is larger than or equal to Af(G). Next we mainly extend such result to non-bipartite graphs, which is the set of all graphs with a perfect matching which contain no two disjoint odd cycles such that their deletion results in a subgraph with a perfect matching. For any such graph G, we also have gf(G) is larger than or equal to Af(G) by revealing further property of non-bipartite graphs with a unique perfect matching. As a consequence, this relation also holds for the graphs whose perfect matching polytopes consist of non-negative 1-regular vectors. In particular, for a brick G, de Carvalho, Lucchesi and Murty [4] showed that G satisfying the above condition if and only if G is solid, and if and only if its perfect matching polytope consists of non-negative 1-regular vectors. Finally, we obtain tight upper and lower bounds on gf(G)-Af(G). For a connected bipartite graph G with 2n vertices, we have that 0 leq gf(G)-Af(G) leq 1/2 (n-1)(n-2); For non-bipartite case, -1/2 (n^2-n-2) leq gf(G)-Af(G) leq (n-1)(n-2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا