ﻻ يوجد ملخص باللغة العربية
In a recent paper Rousseau-Rizzi and Emanuel (2019) presented a derivation of an upper limit on maximum hurricane velocity at the surface. This derivation was based on a consideration of an infinitely narrow (differential) Carnot cycle with the warmer isotherm at the point of the maximum wind velocity. Here we show that this derivation neglected a significant term describing the kinetic energy change in the outflow. Additionally, we highlight the importance of a proper accounting for the power needed to lift liquid water. Finally, we provide a revision to the formula for surface fluxes of heat and momentum showing that, if we accept the assumptions adopted by Rousseau-Rizzi and Emanuel (2019), the resulting velocity estimate does not depend on the flux of sensible heat.
A careful reading of old articles puts Olivier Pauluis criticisms concerning the definition of isentropic processes in terms of a potential temperature closely associated with the entropy of moist air, together with the third principle of thermodynamics, into perspective.
This paper has been withdrawn by the author due to a crucial error in the formulation.
Ocean swell plays an important role in the transport of energy across the ocean, yet its evolution is still not well understood. In the late 1960s, the nonlinear Schr{o}dinger (NLS) equation was derived as a model for the propagation of ocean swell o
In this paper we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained
The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of velocity gradients computed from in situ measurements are used to show that the anomalous s