ترغب بنشر مسار تعليمي؟ اضغط هنا

Speaker diarization with session-level speaker embedding refinement using graph neural networks

336   0   0.0 ( 0 )
 نشر من قبل Jixuan Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.



قيم البحث

اقرأ أيضاً

Speaker Diarization is the problem of separating speakers in an audio. There could be any number of speakers and final result should state when speaker starts and ends. In this project, we analyze given audio file with 2 channels and 2 speakers (on s eparate channel). We train Neural Network for learning when a person is speaking. We use different type of Neural Networks specifically, Single Layer Perceptron (SLP), Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) we achieve $sim$92% of accuracy with RNN. The code for this project is available at https://github.com/vishalshar/SpeakerDiarization_RNN_CNN_LSTM
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embe ddings into a speaker clustering process to improve the overall diarization accuracy. To integrate lexical and acoustic information in a comprehensive way during clustering, we introduce an adjacency matrix integration for spectral clustering. Since words and word boundary information for word-level speaker turn probability estimation are provided by a speech recognition system, our proposed method works without any human intervention for manual transcriptions. We show that the proposed method improves diarization performance on various evaluation datasets compared to the baseline diarization system using acoustic information only in speaker embeddings.
This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling in speech synthesis, it does not correlate with the subjective inter-speaker similarity and is not necessarily appropriate speaker representation for open speakers whose speech utterances are not included in the training data. We propose two training algorithms for DNN-based speaker embedding model using an inter-speaker similarity matrix obtained by large-scale subjective scoring. One is based on similarity vector embedding and trains the model to predict a vector of the similarity matrix as speaker representation. The other is based on similarity matrix embedding and trains the model to minimize the squared Frobenius norm between the similarity matrix and the Gram matrix of $d$-vectors, i.e., the inter-speaker similarity derived from the $d$-vectors. We crowdsourced the inter-speaker similarity scores of 153 Japanese female speakers, and the experimental results demonstrate that our algorithms learn speaker embedding that is highly correlated with the subjective similarity. We also apply the proposed speaker embedding to multi-speaker modeling in DNN-based speech synthesis and reveal that the proposed similarity vector embedding improves synthetic speech quality for open speakers whose speech utterances are unseen during the training.
Speaker diarization is one of the actively researched topics in audio signal processing and machine learning. Utterance clustering is a critical part of a speaker diarization task. In this study, we aim to improve the performance of utterance cluster ing by processing multichannel (stereo) audio signals. We generated processed audio signals by combining left- and right-channel audio signals in a few different ways and then extracted embedded features (also called d-vectors) from those processed audio signals. We applied the Gaussian mixture model (GMM) for supervised utterance clustering. In the training phase, we used a parameter sharing GMM to train the model for each speaker. In the testing phase, we selected the speaker with the maximum likelihood as the detected speaker. Results of experiments with real audio recordings of multi-person discussion sessions showed that our proposed method that used multichannel audio signals achieved significantly better performance than a conventional method with mono audio signals.
Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speakers identity. These identities are not known a pri ori, so a clustering algorithm is typically employed, which is traditionally based solely on audio. Under noisy conditions, however, such an approach poses the risk of generating unreliable speaker clusters. In this work we aim to utilize linguistic information as a supplemental modality to identify the various speakers in a more robust way. We are focused on conversational scenarios where the speakers assume distinct roles and are expected to follow different linguistic patterns. This distinct linguistic variability can be exploited to help us construct the speaker identities. That way, we are able to boost the diarization performance by converting the clustering task to a classification one. The proposed method is applied in real-world dyadic psychotherapy interactions between a provider and a patient and demonstrated to show improved results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا