ﻻ يوجد ملخص باللغة العربية
Four models for the initial conditions of a fluid dynamic description of high energy heavy ion collisions are analysed and compared. We study expectation values and event-by-event fluctuations in the initial transverse energy density profiles from Pb-Pb collisions. Specifically, introducing a Fourier-Bessel mode expansion for fluctuations, we determine expectation values and two-mode correlation functions of the expansion coefficients. The analytically solveable independent point-sources model is compared to an initial state model based on Glauber theory and two models based on the Color Glass Condensate framework. We find that the large wavelength modes of all investigated models show universal properties for central collisions and also discuss to which extent general properties of initial conditions can be understood analytically.
We present a brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism.
The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data t
We illustrate with both a Boltzmann diffusion equation and full simulations of jet propagation in heavy-ion collisions within the Linear Boltzmann Transport (LBT) model that the spatial gradient of the jet transport coefficient perpendicular to the p
In hydrodynamicalmodeling of heavy-ion collisions the initial state spatial anisotropies translate into momentum anisotropies of the final state particle distributions. Thus, understanding the origin of the initial anisotropies and quantifying their
Jet quenching has been used successfully as a hard probe to study properties of the quark-gluon plasma (QGP) in high-energy heavy-collisions at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). We will review recent