ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient tomography of jet quenching in high-energy heavy-ion collisions

202   0   0.0 ( 0 )
 نشر من قبل Xin-Nian Wang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We illustrate with both a Boltzmann diffusion equation and full simulations of jet propagation in heavy-ion collisions within the Linear Boltzmann Transport (LBT) model that the spatial gradient of the jet transport coefficient perpendicular to the propagation direction can lead to a drift and asymmetry in the transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradience and the propagating length. It can be used to localize the initial jet production positions for more detailed studies of jet quenching and properties of the quark-gluon plasma in heavy-ion collisions.

قيم البحث

اقرأ أيضاً

Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c an lead to a drift and asymmetry in parton transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradient and path length of a propagating parton as shown by numerical solutions of the Boltzmann transport in the simplified form of a drift-diffusion equation. In high-energy heavy-ion collisions, this asymmetry with respect to a plane defined by the beam and trigger particle (photon, hadron or jet) with a given orientation relative to the event plane is shown to be closely related to the transverse position of the initial jet production in full event-by-event simulations within the linear Boltzmann transport model. Such a gradient tomography can be used to localize the initial jet production position for more detailed study of jet quenching and properties of the quark-gluon plasma along a given propagation path in heavy-ion collisions.
Jet quenching has been used successfully as a hard probe to study properties of the quark-gluon plasma (QGP) in high-energy heavy-collisions at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). We will review recent progresses in theoretical and phenomenological studies of jet quenching with jet transport models. Special emphasis is given to effects of jet-induced medium response on a wide variety of experimental measurements and their implication on extracting transport properties of the QGP in heavy-ion collisions.
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8~GeV, which remains a mystery since heavy quarks typically lose less energies in quar k-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, $D$ mesons, $B$ mesons and $B$-decayed $D$ mesons simultaneously over a wide range of transverse momenta (8-300~GeV). This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than 30-40~GeV, $B$ mesons also exhibit similar suppression effects to charged hadrons and $D$ mesons, which may be tested by future measurements.
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.
Deep learning techniques have the power to identify the degree of modification of high energy jets traversing deconfined QCD matter on a jet-by-jet basis. Such knowledge allows us to study jets based on their initial, rather than final energy. We sho w how this new technique provides unique access to the genuine configuration profile of jets over the transverse plane of the nuclear collision, both with respect to their production point and their orientation. Effectively removing the selection biases induced by final-state interactions, one can in this way analyse the potential azimuthal anisotropies of jet production associated to initial-state effects. Additionally, we demonstrate the capability of our new method to locate with remarkable precision the production point of a dijet pair in the nuclear overlap region, in what constitutes an important step forward towards the long term quest of using jets as tomographic probes of the quark-gluon plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا