ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiferromagnet-semiconductor van der Waals heterostructures: interlayer interplay of exciton with magnetic ordering

97   0   0.0 ( 0 )
 نشر من قبل Masaru Onga
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals (vdW) heterostructures have attracted great interest because of their rich material combinations.The discovery of two-dimensional magnets has provided a new platform for magnetic vdW heterointerfaces; however, research on magnetic vdW heterointerfaces has been limited to those with ferromagnetic surfaces. Here we report a magnetic vdW heterointerface using layered intralayer-antiferromagnetic MPSe3 (M=Mn, Fe) and monolayer transition metal dichalcogenides (TMDs). We found an anomalous upshift of the excitonic peak in monolayer TMDs below the antiferromagnetic transition temperature in the MPSe3, capturing a signature of the interlayer exciton-magnon coupling. This is a concept extended from single materials to heterointerfaces. Moreover, this coupling strongly depends on the in-plane magnetic structure and stacking direction, showing its sensitivity to their magnetic interfaces. Our finding offers an opportunity to investigate interactions between elementary excitations in different materials across interfaces and to search for new functions of magnetic vdW heterointerfaces.

قيم البحث

اقرأ أيضاً

Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transp ort in semiconducting transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers have suggested that carriers and excitons exhibit long diffusion lengths, a rich variety of scenarios can exist. In a moire crystal with a large supercell size and deep potential, interlayer excitons may be completely localized. As the moire period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion length should be the longest in commensurate heterostructures where the moire superlattice is completely absent. In this study, we experimentally demonstrate that the moire potential impedes interlayer exciton diffusion by comparing a number of WSe2/MoSe2 heterostructures prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles. Our results provide critical guidance to developing twistronic devices that explore the moire superlattice to engineer material properties.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $text{MoSe}_{text{2}}$/$text{WSe}_{text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^circ$ to 3.5$^circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moire potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of twistronics.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, el ectrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II ban d alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level kp model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا