ترغب بنشر مسار تعليمي؟ اضغط هنا

How primordial magnetic fields shrink galaxies

89   0   0.0 ( 0 )
 نشر من قبل Sergio Martin-Alvarez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter remain below current observational upper limits. To understand how such magnetic fields would affect the global morphological and dynamical properties of galaxies, we use a suite of high-resolution constrained transport magneto-hydrodynamic cosmological zoom simulations where we vary the initial magnetic field strength and configuration along with the prescription for stellar feedback. We find that strong primordial magnetic fields delay the onset of star formation and drain the rotational support of the galaxy, diminishing the radial size of the galactic disk and driving a higher amount of gas towards the centre. This is also reflected in mock UVJ observations by an increase in the light profile concentration of the galaxy. We explore the possible mechanisms behind such a reduction in angular momentum, focusing on magnetic braking. Finally, noticing that the effects of primordial magnetic fields are amplified in the presence of stellar feedback, we briefly discuss whether the changes we measure would also be expected for galactic magnetic fields of non-primordial origin.



قيم البحث

اقرأ أيضاً

Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out if magnetic fields observed in galaxies were generated in the Early Universe or are o f astrophysical nature. Motivated by this we use our magnetic tracers algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy in four scenarios: magnetised solely by primordial magnetic fields, magnetised exclusively by SN-injected magnetic fields, and two combined primordial + SN magnetisation cases. We find that once primordial magnetic fields with a comoving strength $B_0 >10^{-12}$ G are considered, they remain the primary source of galaxy magnetisation. Our magnetic tracers show that, even combined with galactic sources of magnetisation, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic and intergalactic medium can be used to probe $B_0$ without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically-sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.
We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host g alaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on Mpc s cales. A low frequency ($<$ 200 MHz) polarization study of this class of radio sources is now possible with LOFAR. Here we investigate the polarization properties and Faraday rotation measure (RM) of a catalog of GRGs detected in the LoTSS. This is the first low-frequency polarization study of a large sample of radio galaxies selected on their physical size. We explore the magneto-ionic properties of their under-dense environment and probe intergalactic magnetic fields using the Faraday rotation properties of their radio lobes. We use RM synthesis in the 120-168 MHz band to search for polarized emission and to derive the RM and fractional polarization of each detected source component. We study the depolarization between 1.4 GHz and 144 MHz using images from the NVSS. From a sample of 240 GRGs, we detected 37 sources in polarization, all with a total flux density above 56 mJy. The fractional polarization of the detected GRGs at 1.4 GHz and 144 MHz is consistent with a small amount of Faraday depolarization (a Faraday dispersion $<$ 0.3 rad m$^{-2}$). Our analysis shows that the lobes are expanding into a low-density ($<10^{-5}$ cm$^{-3}$) local environment permeated by weak magnetic fields ($<$0.1 $mu$G) with fluctuations on scales of 3 to 25 kpc. The presence of foreground galaxy clusters appears to influence the polarization detection rate up to 2R$_{500}$. In general, this work demonstrates the ability of LOFAR to quantify the rarefied environments in which these GRGs exist and highlights them as an excellent statistical sample to use as high precision probes of magnetic fields in the intergalactic medium and the Milky Way.
We present the first study on the amplification of magnetic fields by the turbulent dynamo in the highly subsonic regime, with Mach numbers ranging from $10^{-3}$ to $0.4$. We find that for the lower Mach numbers the saturation efficiency of the dyna mo, $(E_{mathrm{mag}}/E_{mathrm{kin}})_{mathrm{sat}}$, increases as the Mach number decreases. Even in the case when injection of energy is purely through longitudinal forcing modes, $(E_{mathrm{mag}}/E_{mathrm{kin}})_{mathrm{sat}}$ $gtrsim 10^{-2}$ at a Mach number of $10^{-3}$. We apply our results to magnetic field amplification in the early Universe and predict that a turbulent dynamo can amplify primordial magnetic fields to $gtrsim$ $10^{-16}$ Gauss on scales up to 0.1 pc and $gtrsim$ $10^{-13}$ Gauss on scales up to 100 pc. This produces fields compatible with lower limits of the intergalactic magnetic field inferred from blazar $gamma$-ray observations.
324 - Adam Muzzin 2009
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how thi s affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا