ﻻ يوجد ملخص باللغة العربية
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshift
We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS
The central regions of galaxies show the presence of super massive black holes and/or very dense stellar clusters. Both objects seem to follow similar host-galaxy correlations, suggesting that they are members of the same family of Compact Massive Ob
We analyze 99 Type Ia supernovae (SNeIa) observed in $H$ band (1.6--1.8 $mu$m) and find that SNeIa are intrinsically brighter in $H$-band with increasing host galaxy stellar mass. We find that SNeIa in galaxies more massive than $10^{10.44} M_{odot}$
The goal of this work is to understand whether the extreme environment of compact groups can affect the distribution and abundance of faint galaxies around them. We performed an analysis of the faint galaxy population in the vicinity of compact group