ترغب بنشر مسار تعليمي؟ اضغط هنا

Label Efficient Visual Abstractions for Autonomous Driving

106   0   0.0 ( 0 )
 نشر من قبل Kashyap Chitta
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that semantic segmentation can be used as an effective intermediate representation for learning driving policies. However, the task of street scene semantic segmentation requires expensive annotations. Furthermore, segmentation algorithms are often trained irrespective of the actual driving task, using auxiliary image-space loss functions which are not guaranteed to maximize driving metrics such as safety or distance traveled per intervention. In this work, we seek to quantify the impact of reducing segmentation annotation costs on learned behavior cloning agents. We analyze several segmentation-based intermediate representations. We use these visual abstractions to systematically study the trade-off between annotation efficiency and driving performance, i.e., the types of classes labeled, the number of image samples used to learn the visual abstraction model, and their granularity (e.g., object masks vs. 2D bounding boxes). Our analysis uncovers several practical insights into how segmentation-based visual abstractions can be exploited in a more label efficient manner. Surprisingly, we find that state-of-the-art driving performance can be achieved with orders of magnitude reduction in annotation cost. Beyond label efficiency, we find several additional training benefits when leveraging visual abstractions, such as a significant reduction in the variance of the learned policy when compared to state-of-the-art end-to-end driving models.

قيم البحث

اقرأ أيضاً

Deep neural networks have been widely studied in autonomous driving applications such as semantic segmentation or depth estimation. However, training a neural network in a supervised manner requires a large amount of annotated labels which are expens ive and time-consuming to collect. Recent studies leverage synthetic data collected from a virtual environment which are much easier to acquire and more accurate compared to data from the real world, but they usually suffer from poor generalization due to the inherent domain shift problem. In this paper, we propose a Domain-Agnostic Contrastive Learning (DACL) which is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss. DACL leads the neural network to learn domain-agnostic representation to overcome performance degradation when there exists a difference between training and test data distribution. Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods and also shows effectiveness in the semantic segmentation task.
We present a new and complex traffic dataset, METEOR, which captures traffic patterns in unstructured scenarios in India. METEOR consists of more than 1000 one-minute video clips, over 2 million annotated frames with ego-vehicle trajectories, and mor e than 13 million bounding boxes for surrounding vehicles or traffic agents. METEOR is a unique dataset in terms of capturing the heterogeneity of microscopic and macroscopic traffic characteristics. Furthermore, we provide annotations for rare and interesting driving behaviors such as cut-ins, yielding, overtaking, overspeeding, zigzagging, sudden lane changing, running traffic signals, driving in the wrong lanes, taking wrong turns, lack of right-of-way rules at intersections, etc. We also present diverse traffic scenarios corresponding to rainy weather, nighttime driving, driving in rural areas with unmarked roads, and high-density traffic scenarios. We use our novel dataset to evaluate the performance of object detection and behavior prediction algorithms. We show that state-of-the-art object detectors fail in these challenging conditions and also propose a new benchmark test: action-behavior prediction with a baseline mAP score of 70.74.
Human drivers produce a vast amount of data which could, in principle, be used to improve autonomous driving systems. Unfortunately, seemingly straightforward approaches for creating end-to-end driving models that map sensor data directly into drivin g actions are problematic in terms of interpretability, and typically have significant difficulty dealing with spurious correlations. Alternatively, we propose to use this kind of action-based driving data for learning representations. Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery and outperform pure end-to-end driving models, while being more interpretable. Further, we demonstrate how this strategy outperforms previous methods based on learning inverse dynamics models as well as other methods based on heavy human supervision (ImageNet).
We present a simple and flexible object detection framework optimized for autonomous driving. Building on the observation that point clouds in this application are extremely sparse, we propose a practical pillar-based approach to fix the imbalance is sue caused by anchors. In particular, our algorithm incorporates a cylindrical projection into multi-view feature learning, predicts bounding box parameters per pillar rather than per point or per anchor, and includes an aligned pillar-to-point projection module to improve the final prediction. Our anchor-free approach avoids hyperparameter search associated with past methods, simplifying 3D object detection while significantly improving upon state-of-the-art.
Reinforcement learning (RL) is widely used in autonomous driving tasks and training RL models typically involves in a multi-step process: pre-training RL models on simulators, uploading the pre-trained model to real-life robots, and fine-tuning the w eight parameters on robot vehicles. This sequential process is extremely time-consuming and more importantly, knowledge from the fine-tuned model stays local and can not be re-used or leveraged collaboratively. To tackle this problem, we present an online federated RL transfer process for real-time knowledge extraction where all the participant agents make corresponding actions with the knowledge learned by others, even when they are acting in very different environments. To validate the effectiveness of the proposed approach, we constructed a real-life collision avoidance system with Microsoft Airsim simulator and NVIDIA JetsonTX2 car agents, which cooperatively learn from scratch to avoid collisions in indoor environment with obstacle objects. We demonstrate that with the proposed framework, the simulator car agents can transfer knowledge to the RC cars in real-time, with 27% increase in the average distance with obstacles and 42% decrease in the collision counts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا