ﻻ يوجد ملخص باللغة العربية
Providing an early warning of a galactic supernova using neutrino signals is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay reactor neutrino experiment, with a unique feature of multiple liquid scintillator detectors separated in space, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By deploying 8 Antineutrino Detectors (ADs) in three different experimental halls, we obtain a more powerful and prompt rejection of muon spallation background than single-detector experiments. A dedicated supernova online trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way.
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the re
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $bar{ u}_e$ oscillations over km-baselines. Subsequent data has provided the worlds most precise meas
In the Daya Bay Reactor Neutrino Experiment 960 20-cm-diameter waterproof photomultiplier tubes are used to instrument three water pools as Cherenkov detectors for detecting cosmic-ray muons. Of these 960 photomultiplier tubes, 341 are recycled from
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly seal
The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector