ﻻ يوجد ملخص باللغة العربية
Machine translation requires large amounts of parallel text. While such datasets are abundant in domains such as newswire, they are less accessible in the biomedical domain. Chinese and English are two of the most widely spoken languages, yet to our knowledge a parallel corpus in the biomedical domain does not exist for this language pair. In this study, we develop an effective pipeline to acquire and process an English-Chinese parallel corpus, consisting of about 100,000 sentence pairs and 3,000,000 tokens on each side, from the New England Journal of Medicine (NEJM). We show that training on out-of-domain data and fine-tuning with as few as 4,000 NEJM sentence pairs improve translation quality by 25.3 (13.4) BLEU for en$to$zh (zh$to$en) directions. Translation quality continues to improve at a slower pace on larger in-domain datasets, with an increase of 33.0 (24.3) BLEU for en$to$zh (zh$to$en) directions on the full dataset.
We present a parallel machine translation training corpus for English and Akuapem Twi of 25,421 sentence pairs. We used a transformer-based translator to generate initial translations in Akuapem Twi, which were later verified and corrected where nece
The parallel corpus for multilingual NLP tasks, deep learning applications like Statistical Machine Translation Systems is very important. The parallel corpus of Hindi-English language pair available for news translation task till date is of very lim
This paper describes the methodology followed to build a neural machine translation system in the biomedical domain for the English-Catalan language pair. This task can be considered a low-resourced task from the point of view of the domain and the l
This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the
MICE is a corpus of emotion words in four languages which is currently working progress. There are two sections to this study, Part I: Emotion word corpus and Part II: Emotion word survey. In Part 1, the method of how the emotion data is culled for e