A numerical investigation is conducted for a single spin-torque oscillator under the non-linear region. A large angle precession triggers the generation of multiple modes without any feedbacked circuits and/or magnetic couplings with neighboring oscillators. Our simulations show that a single eigenmode of a given spin-torque oscillator can trigger up to six discrete modes as the sideband modes. These findings will offer the new functionality to the STO for developing the spintronic logic circuits.
Spin orbit torque (SOT) has been considered as one of the promising technologies for the next-generation magnetic random access memory (MRAM). So far, SOT has been widely utilized for inducing various modes of magnetization switching. However, it is
challenging to integrate multiple modes of magnetization switching together. In this work we propose a method for implementing both unipolar and bipolar switching of the perpendicular magnetization within a single SOT device. The mode of switching could be easily altered by tuning the amplitude of the applied current. We show that the field-like torque plays an important role in the switching process. The field-like torque induces the precession of the magnetization in the case of unipolar switching, whereas it helps to generate an effective z-component torque in the case of bipolar switching. In addition, the influence of key parameters on the mode of switching is discussed. Our proposal could be used to design novel reconfigurable logic circuits in the near future.
We use He$^+$ irradiation to tune the nonlinearity, $mathcal{N}$, of all-perpendicular spin-torque nano-oscillators (STNOs) using the He$^+$ fluence-dependent perpendicular magnetic anisotropy (PMA) of the [Co/Ni] free layer. Employing fluences from
6 to 20$times10^{14}$~He$^{+}$/cm$^{2}$, we are able to tune $mathcal{N}$ in an in-plane field from strongly positive to moderately negative. As the STNO microwave signal properties are mainly governed by $mathcal{N}$, we can in this way directly control the threshold current, the current tunability of the frequency, and the STNO linewidth. In particular, we can dramatically improve the latter by more than two orders of magnitude. Our results are in good agreement with the theory for nonlinear auto-oscillators, confirm theoretical predictions of the role of nonlinearity, and demonstrate a straightforward path towards improving the microwave properties of STNOs.
We use micromagnetic simulation to demonstrate layer-selective detection of magnetization directions from magnetic dots having two recording layers by using a spin-torque oscillator (STO) as a read device. This method is based on ferromagnetic resona
nce (FMR) excitation of recording-layer magnetizations by the microwave field from the STO. The FMR excitation affects the oscillation of the STO, which is utilized to sense the magnetization states in a recording layer. The recording layers are designed to have different FMR frequencies so that the FMR excitation is selectively induced by tuning the oscillation frequency of the STO. Since all magnetic layers interact with each other through dipolar fields, unnecessary interlayer interferences can occur, which are suppressed by designing magnetic properties of the layers. We move the STO over the magnetic dots, which models a read head moving over recording media, and show that changes in the STO oscillation occur on the one-nanosecond timescale.
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly non-linear properties governing robust mutual synchronization at freq
uencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer, and additional computational functionality can be achieved using SW interference, SOT driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT driven auto-oscillations in magnetic nano-constrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs enabling long range SOT driven SW propagation for nanomagnonics, SW logic, and neuro-morphic computing, directly compatible with CMOS technology.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic mate
rials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
Satoshi Sugimoto
,Shuichi Iwakiri
,Yusuke Kozuka
.
(2020)
.
"Multiple modes of a single spin torque oscillator under the non-linear region"
.
Satoshi Sugimoto
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا