ﻻ يوجد ملخص باللغة العربية
We use micromagnetic simulation to demonstrate layer-selective detection of magnetization directions from magnetic dots having two recording layers by using a spin-torque oscillator (STO) as a read device. This method is based on ferromagnetic resonance (FMR) excitation of recording-layer magnetizations by the microwave field from the STO. The FMR excitation affects the oscillation of the STO, which is utilized to sense the magnetization states in a recording layer. The recording layers are designed to have different FMR frequencies so that the FMR excitation is selectively induced by tuning the oscillation frequency of the STO. Since all magnetic layers interact with each other through dipolar fields, unnecessary interlayer interferences can occur, which are suppressed by designing magnetic properties of the layers. We move the STO over the magnetic dots, which models a read head moving over recording media, and show that changes in the STO oscillation occur on the one-nanosecond timescale.
Control of magnetization dynamics is one of the primary goals in spintronics. It has been demonstrated using spin Hall effect i.e charge current to spin current conversion in non-magnetic metal which has large spin-orbit coupling such as Pt, W etc. R
We use He$^+$ irradiation to tune the nonlinearity, $mathcal{N}$, of all-perpendicular spin-torque nano-oscillators (STNOs) using the He$^+$ fluence-dependent perpendicular magnetic anisotropy (PMA) of the [Co/Ni] free layer. Employing fluences from
We report the control of vertical magnetization shift (VMS) and exchange bias through spin-orbit torque (SOT) in Pt/Co/Ir25Mn75/Co heterostructure device. The exchange bias accompanying with a large relative VMS of about 30 % is observed after applyi
In this study, we report a conceptually novel broadband high-frequency electron spin resonance (HFESR) spectroscopic technique. In contrast to the ordinary force-detected ESR technique, which detects the magnetization change due to the saturation eff
A numerical investigation is conducted for a single spin-torque oscillator under the non-linear region. A large angle precession triggers the generation of multiple modes without any feedbacked circuits and/or magnetic couplings with neighboring osci