ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive Multimessenger Modeling of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube

166   0   0.0 ( 0 )
 نشر من قبل Maria Petropoulou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

3HSP J095507.9+355101 is an extreme blazar which has been possibly associated with a high-energy neutrino (IceCube-200107A) detected one day before the blazar was found to undergo a hard X-ray flare. We perform a comprehensive study of the predicted multimessenger emission from 3HSP J095507.9+355101 during its recent X-ray flare, but also in the long term. We focus on one-zone leptohadronic models, but we also explore alternative scenarios: (i) a blazar-core model, which considers neutrino production in the inner jet, close to the supermassive black hole; (ii) a hidden external-photon model, which considers neutrino production in the jet through interactions with photons from a weak broad line region; (iii) a proton synchrotron model, where high-energy protons in the jet produce $gamma$-rays via synchrotron; and (iv) an intergalactic cascade scenario, where neutrinos are produced in the intergalactic medium by interactions of a high-energy cosmic-ray beam escaping the jet. The Poisson probability to detect one muon neutrino in ten years from 3HSP J095507.9+355101 with the real-time IceCube alert analysis is $sim 1%$ ($3%$) for the most optimistic one-zone leptohadronic model (the multi-zone blazar-core model). Meanwhile, detection of one neutrino during the 44-day-long high X-ray flux-state period following the neutrino detection is $0.06%$, according to our most optimistic leptohadronic model. The most promising scenarios for neutrino production also predict strong intra-source $gamma$-ray attenuation above $sim100$ GeV. If the association is real, then IceCube-Gen2 and other future detectors should be able to provide additional evidence for neutrino production in 3HSP J095507.9+355101 and other extreme blazars.



قيم البحث

اقرأ أيضاً

The uncertainty region of the highly energetic neutrino IceCube200107A includes 3HSP J095507.9+355101 ($z$~=~0.557), an extreme blazar, which was detected in a high, very hard, and variable X-ray state shortly after the neutrino arrival. Following a detailed multi-wavelength investigation, we confirm that the source is a genuine BL Lac, contrary to TXS 0506+056, the first source so far associated with IceCube neutrinos, which is a masquerading BL Lac. As in the case of TXS0506+056, 3HSP J095507.9+355101 is also way off the so-called blazar sequence. We consider 3HSP J095507.9+355101 a possible counterpart to the IceCube neutrino. Finally, we discuss some theoretical implications in terms of neutrino production.
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010 . These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCubes observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$,M$_odot$c$^2$ at $sim 150$,Hz with $sim 60$,ms duration, and high-energy neutrino emission of $10^{51}$,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 times 10^{-2}$,Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
The observation of electromagnetic radiation from radio to $gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messen gers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies. IceCube-Gen2 is designed to: 1) Resolve the high-energy neutrino sky from TeV to EeV energies; 2) Investigate cosmic particle acceleration through multi-messenger observations; 3) Reveal the sources and propagation of the highest energy particles in the universe; 4) Probe fundamental physics with high-energy neutrinos. IceCube-Gen2 will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe. This challenging mission can be fully addressed only in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis loo ks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of $<1$ coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of $<4$ coincidences per year.
133 - P. Padovani 2016
We explore the correlation of $gamma$-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one $gamma$-ray counterpart, $N_{ u}$. In all three catalogues we consistently observe a positive fluctuation of $N_{ u}$ with respect to the mean random expectation at a significance level of $0.4 - 1.3$ per cent. This applies only to extreme blazars, namely strong, very high energy $gamma$-ray sources of the high energy peaked type, and implies a model-independent fraction of the current IceCube signal $sim 10 - 20$ per cent. An investigation of the hybrid photon -- neutrino spectral energy distributions of the most likely candidates reveals a set of $approx 5$ such sources, which could be linked to the corresponding IceCube neutrinos. Other types of blazars, when testable, give null correlation results. Although we could not perform a similar correlation study for Galactic sources, we have also identified two (further) strong Galactic $gamma$-ray sources as most probable counterparts of IceCube neutrinos through their hybrid spectral energy distributions. We have reasons to believe that our blazar results are not constrained by the $gamma$-ray samples but by the neutrino statistics, which means that the detection of more astrophysical neutrinos could turn this first hint into a discovery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا