ﻻ يوجد ملخص باللغة العربية
We explore the correlation of $gamma$-ray emitting blazars with IceCube neutrinos by using three very recently completed, and independently built, catalogues and the latest neutrino lists. We introduce a new observable, namely the number of neutrino events with at least one $gamma$-ray counterpart, $N_{ u}$. In all three catalogues we consistently observe a positive fluctuation of $N_{ u}$ with respect to the mean random expectation at a significance level of $0.4 - 1.3$ per cent. This applies only to extreme blazars, namely strong, very high energy $gamma$-ray sources of the high energy peaked type, and implies a model-independent fraction of the current IceCube signal $sim 10 - 20$ per cent. An investigation of the hybrid photon -- neutrino spectral energy distributions of the most likely candidates reveals a set of $approx 5$ such sources, which could be linked to the corresponding IceCube neutrinos. Other types of blazars, when testable, give null correlation results. Although we could not perform a similar correlation study for Galactic sources, we have also identified two (further) strong Galactic $gamma$-ray sources as most probable counterparts of IceCube neutrinos through their hybrid spectral energy distributions. We have reasons to believe that our blazar results are not constrained by the $gamma$-ray samples but by the neutrino statistics, which means that the detection of more astrophysical neutrinos could turn this first hint into a discovery.
A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year
Recently we have shown that high-energy neutrinos above 200 TeV detected by IceCube are produced within several parsecs in the central regions of radio-bright blazars, that is active galactic nuclei with jets pointing towards us. To independently tes
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino
The first dedicated search for ultra-high energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25 km^3. The search also had sensitivity to
A diffuse flux of astrophysical neutrinos above $100,mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35,mathrm{TeV}$ and analyze its flavor composition by class