ﻻ يوجد ملخص باللغة العربية
Hydrogen (H) induced damage in metals has been a long-standing woe for many industrial applications. One form of such damage is linked to H clustering, for which the atomic origin remains contended, particularly for non-hydride forming metals. In this work, we systematically studied H clustering behavior in bcc metals represented by W, Fe, Mo, and Cr, combining first-principles calculations, atomistic and Monte Carlo simulations. H clustering has been shown to be energetically favorable, and can be strongly facilitated by anisotropic stress field, dominated by the tensile component along one of the <001> crystalline directions. We showed that the stress effect can be well predicted by the continuum model based on H formation volume tensor, and that H clustering is thermodynamically possible at edge dislocations, evidenced by nanohydride formation at rather low levels of H concentration. Moreover, anisotropy in the stress effect is well reflected in nanohydride morphology around dislocations, with nanohydride growth occurring in the form of thin platelet structures that maximize one <001> tension. In particular, the <001> type edge dislocation, with the <001> tensile component maximized, has been shown to be highly effective in facilitating H aggregation, thus expected to play an important role in H clustering in bcc metals, in close agreement with recent experimental observations. This work explicitly and quantitatively clarifies the anisotropic nature of stress effect on H energetics and H clustering behaviors, offering mechanistic insights critical towards understanding H-induced damages in metals.
Interplay between hydrogen and nanovoids, despite long-recognized as a central aspect in hydrogen-induced damages in structural materials, remains poorly understood. Focusing on tungsten as a model BCC system, the present study, for the first time, e
The interface stresses at of the solid-melt interface are, in general, anisotropic. The anisotropy in the interfacial stress can be evaluated using molecular dynamics (MD) and phase field crystal (PFC) models. In this paper, we report our results on
Knowledge on structures and energetics of nanovoids is fundamental to understand defect evolution in metals. Yet there remain no reliable methods able to determine essential structural details or to provide accurate assessment of energetics for gener
The validity of the structure-property relationships governing the deformation behavior of bcc metals was brought into question with recent {it ab initio} density functional studies of isolated screw dislocations in Mo and Ta. These existing relation
We present a systematic trend study of the symmetric tilt grain boundaries about the <110> axis in molybdenum. Our results show that multiple structural phases, some incorporating vacancies, compete for the boundary ground state. We find that at low