ﻻ يوجد ملخص باللغة العربية
Quantum spin-liquids are strongly correlated phases of matter displaying a highly entangled ground state. Due to their unconventional nature, finding experimental signatures of these states has proven to be a remarkable challenge. Here we show that the effects of local impurities can provide strong signatures of a Dirac quantum spin-liquid state. Focusing on a gapless Dirac quantum spin-liquid state as realized in NaYbO$_2$, we show that single magnetic impurity coupled to the quantum spin-liquid state creates a resonant spinon peak at zero frequency, coexisting the original Dirac spinons. We explore the spatial dependence of this zero-bias resonance, and show how different zero modes stemming from several impurities interfere. We finally address how such spinon zero-mode resonances can be experimentally probed with inelastic spectroscopy and electrically-driven paramagnetic resonance with scanning tunnel microscopy. Our results put forward impurity engineering as a means of identifying Dirac quantum spin-liquids with scanning probe techniques, highlighting the dramatic impact of magnetic impurities in a macroscopically entangled many-body ground state.
Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of matter. Frustration is the key mechanism to favor spin liquids over more conventional magnetically ordered states. Here we propose to engineer frustration by exp
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, descri
We combine the pseudofermion functional renormalization group (PFFRG) method with a self-consistent Fock-like mean-field scheme to calculate low-energy effective theories for emergent spinon excitations in spin-1/2 quantum spin liquids. Using effecti
We scrutinize the magnetic properties of $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl through its first-order metal-insulator transition at $T_{rm CO}=30$ K by means of $^1$H nuclear magnetic resonance (NMR). While in the metal we find Fermi-liquid behavior w
Recent experimental evidence for a field-induced quantum spin liquid (QSL) in $alpha$-RuCl$_3$ calls for an understanding for the ground state of honeycomb Kitaev model under a magnetic field. In this work we address the nature of an enigmatic gaples