ﻻ يوجد ملخص باللغة العربية
We apply strategy of variational measurement to simplest variant of dissipative coupling (test mass displacement change transitivity of a single mirror) and compare it with simplest dispersive coupling (a single mirror as a test mass, which position changes the phase of reflected wave). We compare a ponderomotive squeezing in this two kinds of coupling. Also we analyze simplest variant of combined coupling, in which both dissipative and dispersive couplings are used, and show that it creates stable optical rigidity even in case of single pump. We demonstrate that variational measurement can be applied for combined coupling.
Nowadays is very common to find headlines in the media where it is stated that 3D printing is a technology called to change our lives in the near future. For many authors, we are living in times of a third industrial revolution. Howerver, we are curr
By spectrally hole burning an inhomogeneously broadened ensemble of ions while applying a controlled perturbation, one can obtain spectral holes that are functionalized for maximum sensitivity to different perturbations. We propose to use such hole b
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latters susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the m
Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up to approximately $500$ MHz/nm and dispersive c
Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissi