ﻻ يوجد ملخص باللغة العربية
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latters susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of $unit{1.9 cdot 10^{-16}}{metre/sqrt{hertz}}$ around the membranes fundamental oscillation mode at $unit{133}{kilohertz}$ has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.
We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, on
The ability to coherently control mechanical systems with optical fields has made great strides over the past decade, and now includes the use of photon counting techniques to detect the non-classical nature of mechanical states. These techniques may
Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive s
We propose a scheme to realize quantum networking of superconducting qubits based on the opto-mechanical interface. The superconducting qubits interact with the microwave photons, which then couple to the optical photons through the opto-mechanical i
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) eithe