ﻻ يوجد ملخص باللغة العربية
Semi-supervised learning (SSL) has a potential to improve the predictive performance of machine learning models using unlabeled data. Although there has been remarkable recent progress, the scope of demonstration in SSL has mainly been on image classification tasks. In this paper, we propose STAC, a simple yet effective SSL framework for visual object detection along with a data augmentation strategy. STAC deploys highly confident pseudo labels of localized objects from an unlabeled image and updates the model by enforcing consistency via strong augmentations. We propose experimental protocols to evaluate the performance of semi-supervised object detection using MS-COCO and show the efficacy of STAC on both MS-COCO and VOC07. On VOC07, STAC improves the AP$^{0.5}$ from $76.30$ to $79.08$; on MS-COCO, STAC demonstrates $2{times}$ higher data efficiency by achieving 24.38 mAP using only 5% labeled data than supervised baseline that marks 23.86% using 10% labeled data. The code is available at https://github.com/google-research/ssl_detection/.
Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this paper, we propose an Interpolation
Signet ring cell carcinoma is a type of rare adenocarcinoma with poor prognosis. Early detection leads to huge improvement of patients survival rate. However, pathologists can only visually detect signet ring cells under the microscope. This procedur
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires
Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model
The use of supervised learning with various sensing techniques such as audio, visual imaging, thermal sensing, RADAR, and radio frequency (RF) have been widely applied in the detection of unmanned aerial vehicles (UAV) in an environment. However, lit