ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray absorption evolution in Gamma-Ray Bursts: intergalactic medium or evolutionary signature of their host galaxies?

133   0   0.0 ( 0 )
 نشر من قبل Rhaana L. C. Starling
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic X-ray emission of Gamma-Ray Bursts (GRBs) is often found to be absorbed over and above the column density through our own galaxy. The extra component is usually assumed to be due to absorbing gas lying within the host galaxy of the GRB itself. There is an apparent correlation between the equivalent column density of hydrogen, N(H,intrinsic) (assuming it to be at the GRB redshift), and redshift, z, with the few z>6 GRBs showing the greatest intrinsic column densities. We investigate the N(H,intrinsic) - z relation using a large sample of Swift GRBs, as well as active galactic nuclei (AGN) and quasar samples, paying particular attention to the spectral energy distributions of the two highest redshift GRBs. Various possible sample biases and systematics that might produce such a correlation are considered, and we conclude that the correlation is very likely to be real. This may indicate either an evolutionary effect in the host galaxy properties, or a contribution from gas along the line-of-sight, in the diffuse intergalactic medium (IGM) or intervening absorbing clouds. Employing a more realistic model for IGM absorption than in previous works, we find that this may explain much of the observed opacity at z>~3 providing it is not too hot, likely between 10^5 K and 10^6.5 K, and moderately metal enriched, Z~0.2 Z_sun. This material could therefore constitute the Warm Hot Intergalactic Medium. However, a comparable level of absorption is also expected from the cumulative effect of intervening cold gas clouds, and given current uncertainties it is not possible to say which, if either, dominates. At lower redshifts, we conclude that gas in the host galaxies must be the dominant contributor to the observed X-ray absorption.



قيم البحث

اقرأ أيضاً

155 - Emily M. Levesque 2013
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive stars. The host galaxies of LGRBs are an excellent means of probing the environments and populations that produce their unusual progenitors. In addition, these same young stellar progenitors makes LGRBs and their host galaxies valuable potentially powerful tracers of star formation and metallicity at high redshifts. However, properly utilizing LGRBs as probes of the early universe requires a thorough understanding of their formation and the host environments that they sample. This review looks back at some of the recent work on LGRB host galaxies that has advanced our understanding of these events and their cosmological applications, and considers the many new questions that we are poised to pursue in the coming years.
We use numerical simulations of large scale structure formation to explore the cosmological properties of Gamma-Ray Burst (GRB) host galaxies. Among the different sub-populations found in the simulations, we identify the host galaxies as the most eff icient star-forming objects, i.e. galaxies with high specific star formation rates. We find that the host candidates are low-mass, young galaxies with low to moderate star formation rate. These properties are consistent with those observed in GRB hosts, most of which are sub-luminous, blue galaxies. Assuming that host candidates are galaxies with high star formation rates would have given conclusions inconsistent with the observations. The specific star formation rate, given a galaxy mass, is shown to increase as the redshift increases. The low mass of the putative hosts makes them difficult to detect with present day telescopes and the probability density function of the specific star formation rate is predicted to change depending on whether or not these galaxies are observed.
The origin of the X-ray afterglows of gamma-ray bursts has regularly been debated. We fit both the fireball-shock and millisecond-magnetar models of gamma-ray bursts to the X-ray data of GRB 130603B and 140903A. We use Bayesian model selection to ans wer the question of which model best explains the data. This is dependent on the maximum allowed non-rotating neutron star mass $M_{textrm{TOV}}$, which depends solely on the unknown nuclear equation of state. We show that the data for GRB140903A favours the millisecond-magnetar model for all possible equations of state, while the data for GRB130603B favours the millisecond-magnetar model if $M_{textrm{TOV}} gtrsim 2.3 M_{odot}$. If $M_{textrm{TOV}} lesssim 2.3 M_{odot}$, the data for GRB130603B supports the fireball-shock model. We discuss implications of this result in regards to the nuclear equation of state and the prospect of gravitational-wave emission from newly-born millisecond magnetars.
Using multiwavelength observations of radio afterglows, we confirm the hypothesis that the flux density of gamma-ray bursts (GRBs) at a fixed observing frequency is invariable when the distance of the GRBs increases, which means the detection rate wi ll be approximately independent of redshift. We study this behavior theoretically and find that it can be well explained by the standard forward shock model involving a thin shell expanding in either a homogeneous interstellar medium (ISM) or a wind environment. We also found that short GRBs and supernova-associated GRBs, which are at relatively smaller distances, marginally match the flux-redshift relationship and they could be outliers. We rule out the assumption that the medium density evolves with redshift as $npropto(1+z)^4$ from the current measurements of $n$ and $z$ for short and long GRBs. In addition, the possible dependence of host flux on the redshift is also investigated. We find that a similar redshift independence of the flux exists for host galaxies as well, which implies that the detection rate of radio hosts might also be independent of the redshift. It is also hinted that most radio hosts have the spectral indices ranging from $beta_hsimeq-1$ to 2.5 in statistics. Finally, we predict the detection rates of radio afterglows by the next-generation radio telescopes such as the Five-hundred meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA).
136 - B. McBreen , S. Foley , L. Hanlon 2010
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the a bility of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا