ترغب بنشر مسار تعليمي؟ اضغط هنا

Contact-based Social Contagion in Multiplex Networks

157   0   0.0 ( 0 )
 نشر من قبل Yamir Moreno Vega
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated to the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is flawed.



قيم البحث

اقرأ أيضاً

Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the systems structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of link overlap in the viability of multiplex networks, both analytically and numerically. Distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several removal strategies. Our results show that the link overlap strongly facilitates viability and mutual percolation; at the same time, the presence of link overlap poses challenge in analytical approach to the problem.
We present a model that takes into account the coupling between evolutionary game dynamics and social influence. Importantly, social influence and game dynamics take place in different domains, which we model as different layers of a multiplex networ k. We show that the coupling between these dynamical processes can lead to cooperation in scenarios where the pure game dynamics predicts defection. In addition, we show that the structure of the network layers and the relation between them can further increase cooperation. Remarkably, if the layers are related in a certain way, the system can reach a polarized metastable state.These findings could explain the prevalence of polarization observed in many social dilemmas.
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address var ious notions of the network robustness relevant to multiplex networks such as the resilience of ordinary- and mutual connectivity under random or targeted node removals as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally-correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anti-correlated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.
195 - Kyu-Min Lee , Byungjoon Min , 2015
Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven t hat the multiplexity has broad impact on the systems structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.
Our understanding of the dynamics of complex networked systems has increased significantly in the last two decades. However, most of our knowledge is built upon assuming pairwise relations among the systems components. This is often an oversimplifica tion, for instance, in social interactions that occur frequently within groups. To overcome this limitation, here we study the dynamics of social contagion on hypergraphs. We develop an analytical framework and provide numerical results for arbitrary hypergraphs, which we also support with Monte Carlo simulations. Our analyses show that the model has a vast parameter space, with first and second-order transitions, bi-stability, and hysteresis. Phenomenologically, we also extend the concept of latent heat to social contexts, which might help understanding oscillatory social behaviors. Our work unfolds the research line of higher-order models and the analytical treatment of hypergraphs, posing new questions and paving the way for modeling dynamical processes on these networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا