ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH survey: Multiple stars and our Galaxy. I. A comprehensive method for deriving properties of FGK binary stars

134   0   0.0 ( 0 )
 نشر من قبل Gregor Traven
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary stellar systems form a large fraction of the Galaxys stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. We present a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. They were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. This sample consists mostly of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. To compute parameters of the primary and secondary star ($T_{rm eff[1,2]}$, $log g_{[1,2]}$, [Fe/H], $V_{r[1,2]}$, $v_{rm mic[1,2]}$, $v_{rm broad[1,2]}$, $R_{[1,2]}$, and $E(B-V)$), we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. The derived stellar properties and their distributions show trends that are expected for a population of close binaries (a $<$ 10 AU) with mass ratios $0.5 leq q leq 1$. The derived metallicity of these binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.

قيم البحث

اقرأ أيضاً

We investigate the properties of 1262 red giant stars with high photospheric abundances of lithium observed by the GALAH and Ktwo-HERMES surveys, and discuss them in the context of proposed mechanisms for lithium enrichment and re-depletion in giant stars. We confirm that Li-rich giants are rare, making up only 1.2 per cent of our giant star sample. We use stellar parameters from the third public data release from the GALAH survey and a Bayesian isochrone analysis to divide the sample into first-ascent red giant branch and red clump stars, and confirm these classifications using asteroseismic data from Ktwo. We find that red clump stars are 2.5 times as likely to be lithium-rich as red giant branch stars, in agreement with other recent work. The probability for a star to be lithium-rich is affected by a number of factors, though the causality in those correlations is not entirely clear. We show for the first time that primary and secondary red clump stars have distinctly different lithium enrichment patterns. The data set discussed here is large and heterogeneous in terms of evolutionary phase, metallicity, rotation rate and mass. We expect that if the various mechanisms that have been proposed for lithium enrichment in evolved stars are in fact active, they should all contribute to this sample of lithium-rich giants at some level.
Swan bands - characteristic molecular absorption features of the C$_2$ molecule - are a spectroscopic signature of carbon-enhanced stars. They can also be used to identify carbon-enhanced metal-poor (CEMP) stars. The GALAH (GALactic Archaeology with Hermes) is a magnitude-limited survey of stars producing high-resolution, high signal-to-noise spectra. We used 627,708 GALAH spectra to search for carbon-enhanced stars with a supervised and unsupervised classification algorithm, relying on the imprint of the Swan bands. We identified 918 carbon-enhanced stars, including 12 already described in the literature. An unbiased selection function of the GALAH survey allows us to perform a population study of carbon-enhanced stars. Most of them are giants, out of which we find 28 CEMP candidates. A large fraction of our carbon-enhanced stars with repeated observations show variation in radial velocity, hinting that there is a large fraction of variables among them. 32 of the detected stars also show strong Lithium enhancement in their spectra.
An unprecedented number of exoplanets are being discovered by the Transiting Exoplanet Survey Satellite (TESS). Determining the orbital parameters of these exoplanets, and especially their mass and radius, will depend heavily upon the measured physic al characteristics of their host stars. We have cross-matched spectroscopic, photometric, and astrometric data from GALAH Data Release 2, the TESS Input Catalog and Gaia Data Release 2, to create a curated, self-consistent catalog of physical and chemical properties for 47,285 stars. Using these data we have derived isochrone masses and radii that are precise to within 5%. We have revised the parameters of three confirmed, and twelve candidate, TESS planetary systems. These results cast doubt on whether CTOI-20125677 is indeed a planetary system since the revised planetary radii are now comparable to stellar sizes. Our GALAH-TESS catalog contains abundances for up to 23 elements. We have specifically analysed the molar ratios for C/O, Mg/Si, Fe/Si and Fe/Mg, to assist in determining the composition and structure of planets with $R_p < 4R_oplus$. From these ratios, 36% fall within 2 sigma of the Sun/Earth values, suggesting that these stars may host rocky exoplanets with geological compositions similar to planets found within our own Solar system.
The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and type Ia supernovae formation channels.
The abundance patterns of $r$-process-enhanced stars contain key information required to constrain the astrophysical site(s) of $r$-process nucleosynthesis, and to deepen our understanding of the chemical evolution of our Galaxy. In order to expand t he sample of known $r$-process-enhanced stars, we have developed a method to search for candidates in the LAMOST medium-resolution ($R sim 7500$) spectroscopic survey by matching the observed spectra to synthetic templates around the Eu II line at 6645.1 AA. We obtain a sample of 13 metal-poor ($-2.35<{rm [Fe/H]}<-0.91$) candidates from 12,209 unique stars with 32,774 medium-resolution spectra. These candidates will be further studied by high-resolution follow-up observations in the near future. Extensions of this effort to include larger samples of stars, in particular at lower metallicity, using the strength of the Ba II line at 6496.9 AA, are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا