ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for r-process-enhanced stars in the LAMOST Survey I: The Method

94   0   0.0 ( 0 )
 نشر من قبل Tianyi Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The abundance patterns of $r$-process-enhanced stars contain key information required to constrain the astrophysical site(s) of $r$-process nucleosynthesis, and to deepen our understanding of the chemical evolution of our Galaxy. In order to expand the sample of known $r$-process-enhanced stars, we have developed a method to search for candidates in the LAMOST medium-resolution ($R sim 7500$) spectroscopic survey by matching the observed spectra to synthetic templates around the Eu II line at 6645.1 AA. We obtain a sample of 13 metal-poor ($-2.35<{rm [Fe/H]}<-0.91$) candidates from 12,209 unique stars with 32,774 medium-resolution spectra. These candidates will be further studied by high-resolution follow-up observations in the near future. Extensions of this effort to include larger samples of stars, in particular at lower metallicity, using the strength of the Ba II line at 6496.9 AA, are described.



قيم البحث

اقرأ أيضاً

Here we present the discovery of 895 s-process-rich candidates from 454,180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-p rocess enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates (less than 3 percent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 percent of our sample are disc stars, with the other 3 percent showing velocities consistent with the Galactic halo. The scaleheight of the disc is estimated to be zh=0.634kpc, comparable with values in the literature. A comparison with the yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the 13C(alpha,n)16O reaction. We conclude that the s-process-rich candidates may have received their overabundances via mass transfer from a previous ABG companion with an initial mass in the range 1-3Msun.
This compilation is the fourth data release from the $R$-Process Alliance (RPA) search for $r$-process-enhanced stars, and the second release based on snapshot high-resolution ($R sim 30,000$) spectra collected with the du Pont 2.5m Telescope. In thi s data release, we propose a new delineation between the $r$-I and $r$-II stellar classes at $mathrm{[Eu/Fe]} = +0.7$, instead of the empirically chosen $mathrm{[Eu/Fe]} = +1.0$ level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the $r$-I stars, [Eu/Fe] $> +0.3$. Redefining the separation between $r$-I and $r$-II stars will aid in analysis of the possible progenitors of these two classes of stars and whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified $r$-II and $r$-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new $r$-II, 111 new $r$-I (plus three re-identified), and 7 new (plus one re-identified) limited-$r$ stars out of a total of 232 target stars, resulting in a total sample of 72 new $r$-II stars, 232 new $r$-I stars, and 42 new limited-$r$ stars identified by the RPA to date.
We present a study on the detailed chemical abundances of five new relatively bright $r$-process-enhanced stars that were initially observed as part of the SDSS/MARVELS pre-survey. These stars were selected, on the basis of their metallicities and ca rbon abundances, among a total of 60 stars, for high-resolution spectroscopic follow-up as part of the HESP-GOMPA survey (Hanle Echelle SPectrograph -- Galactic survey Of Metal Poor stArs). Here we discuss the three new $r$-I and two new $r$-II stars found in this survey. We have carried out a detailed abundance analysis for each of these stars, at a resolving power of $R sim 30,000$, and compare our results to the existing literature. We could measure three of the first $r$-process-peak elements (Sr, Y and Zr) in all five stars, while Ba, Ce, Nd, Sm, Eu, and Dy could be detected among the second $r$-process-peak elements. Thorium could also be detected in one of the targets, which is found to be an actinide-boost star. We have carried out a comparative study among the sub-populations of the $r$-process-enhanced stars and other stars of the Milky Way halo population to constrain the origin of this class of objects. These bright $r$-process-enhanced stars provide an excellent opportunity to study the nucleosynthesis history of this population in great detail, and shed light on their chemical-enrichment histories.
Extensive progress has been recently made into our understanding of heavy element production via the $r$-process in the Universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational wave sign al detected by LIGO, GW170817. The chemical abundance patterns of metal-poor $r$-process-enhanced stars provides key evidence into the dominant site(s) of the $r$-process, and whether NSBMs are sufficiently frequent or prolific $r$-process sources to be responsible for the majority of $r$-process material in the Universe. We present atmospheric stellar parameters (using a Non-Local Thermodynamic Equilibrium analysis) and abundances from a detailed analysis of 141 metal-poor stars, carried out as part of the $R$-Process Alliance (RPA) effort. We obtained high-resolution snapshot spectroscopy of the stars using the MIKE spectrograph on the 6.5m Magellan Clay telescope at Las Campanas Observatory in Chile. We find 10 new highly enhanced $r$-II (with [Eu/Fe] $> +1.0$), 62 new moderately enhanced $r$-I ($+0.3 < $ [Eu/Fe] $le +1.0$) and 17 new limited-$r$ ([Eu/Fe] $< +0.3$) stars. Among those, we find 17 new carbon-enhanced metal-poor (CEMP) stars, of which five are CEMP-no. We also identify one new $s$-process-enhanced ([Ba/Eu ]$ > +0.5$), and five new $r/s$ ($0.0 < $ [Ba/Eu] $ < +0.5$) stars. In the process, we discover a new ultra metal-poor (UMP) star at [Fe/H]=$-$4.02. One of the $r$-II stars shows a deficit in $alpha$ and Fe-peak elements, typical of dwarf galaxy stars. Our search for $r$-process-enhanced stars by RPA efforts, has already roughly doubled the known $r$-process sample.
This paper presents the detailed abundances and r-process classifications of 126 newly identified metal-poor stars as part of an ongoing collaboration, the R-Process Alliance. The stars were identified as metal-poor candidates from the RAdial Velocit y Experiment (RAVE) and were followed-up at high spectral resolution (R~31,500) with the 3.5~m telescope at Apache Point Observatory. The atmospheric parameters were determined spectroscopically from Fe I lines, taking into account <3D> non-LTE corrections and using differential abundances with respect to a set of standards. Of the 126 new stars, 124 have [Fe/H]<-1.5, 105 have [Fe/H]<-2.0, and 4 have [Fe/H]<-3.0. Nine new carbon-enhanced metal-poor stars have been discovered, 3 of which are enhanced in r-process elements. Abundances of neutron-capture elements reveal 60 new r-I stars (with +0.3<=[Eu/Fe]<=+1.0 and [Ba/Eu]<0) and 4 new r-II stars (with [Eu/Fe]>+1.0). Nineteen stars are found to exhibit a `limited-r signature ([Sr/Ba]>+0.5, [Ba/Eu]<0). For the r-II stars, the second- and third-peak main r-process patterns are consistent with the r-process signature in other metal-poor stars and the Sun. The abundances of the light, alpha, and Fe-peak elements match those of typical Milky Way halo stars, except for one r-I star which has high Na and low Mg, characteristic of globular cluster stars. Parallaxes and proper motions from the second Gaia data release yield UVW space velocities for these stars which are consistent with membership in the Milky Way halo. Intriguingly, all r-II and the majority of r-I stars have retrograde orbits, which may indicate an accretion origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا