ترغب بنشر مسار تعليمي؟ اضغط هنا

Local quenches, bulk entanglement entropy and a unitary Page curve

154   0   0.0 ( 0 )
 نشر من قبل Juan Pedraza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum corrections to the entanglement entropy of matter fields interacting with dynamical gravity have proven to be very important in the study of the black hole information problem. We consider a one-particle excited state of a massive scalar field infalling in a pure AdS$_3$ geometry and compute these corrections for bulk subregions anchored on the AdS boundary. In the dual CFT$_2$, the state is given by the insertion of a local primary operator and its evolution thereafter. We calculate the area and bulk entanglement entropy corrections at order $mathcal{O}(N^0)$, both in AdS and its CFT dual. The two calculations match, thus providing a non-trivial check of the FLM formula in a dynamical setting. Further, we observe that the bulk entanglement entropy follows a Page curve. We explain the precise sense in which our setup can be interpreted as a simple model of black hole evaporation and comment on the implications for the information problem.



قيم البحث

اقرأ أيضاً

We present a new class of local quenches described by mixed states, parameterized universally by two parameters. We compute the evolutions of entanglement entropy for both a holographic and Dirac fermion CFT in two dimensions. This turns out to be eq uivalent to calculations of two point functions on a torus. We find that in holographic CFTs, the results coincide with the known results of pure state local operator quenches. On the other hand, we obtain new behaviors in the Dirac fermion CFT, which are missing in the pure state counterpart. By combining our results with the inequalities known for von-Neumann entropy, we obtain an upper bound of the pure state local operator quenches in the Dirac fermion CFT. We also explore predictions about the behaviors of entanglement entropy for more general mixed states.
Asymptotic Causal Diamonds (ACDs) are a natural flat space analogue of AdS causal wedges, and it has been argued previously that they may be useful for understanding bulk locality in flat space holography. In this paper, we use ACD-inspired ideas to argue that there exist natural candidates for Quantum Extremal Surfaces (QES) and entanglement wedges in flat space, anchored to the conformal boundary. When there is a holographic screen at finite radius, we can also associate entanglement wedges and entropies to screen sub-regions, with the system naturally coupled to a sink. The screen and the boundary provide two complementary ways of formulating the information paradox. We explain how they are related and show that in both formulations, the flat space entanglement wedge undergoes a phase transition at the Page time in the background of an evaporating Schwarzschild black hole. Our results closely parallel recent observations in AdS, and reproduce the Page curve. That there is a variation of the argument that can be phrased directly in flat space without reliance on AdS, is a strong indication that entanglement wedge phase transitions may be key to the information paradox in flat space as well. Along the way, we give evidence that the entanglement entropy of an ACD is a well-defined, and likely instructive, quantity. We further note that the picture of the sink we present here may have an understanding in terms of sub-matrix deconfinement in a large-$N$ setting.
We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using this we compute the entropy of Hawking radiation and argue that it follows the Page curve, as suggested by recent computations of the entropy and entanglement wedges for old black holes. The higher-dimensional geometry connects the radiation to the black hole interior in the spirit of ER=EPR. The black hole interior then becomes part of the entanglement wedge of the radiation. Inspired by this, we propose a new rule for computing the entropy of quantum systems entangled with gravitational systems which involves searching for islands in determining the entanglement wedge.
We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: i) soft photons with ener gies less than a characteristic infrared scale $E_d$ present in the clouds accompanying the asymptotic charged particles, and ii) sufficiently low energy photons with energies greater than $E_d$, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.
Understanding quantum entanglement in interacting higher-dimensional conformal field theories is a challenging task, as direct analytical calculations are often impossible to perform. With holographic entanglement entropy, calculations of entanglemen t entropy turn into a problem of finding extremal surfaces in a curved spacetime, which we tackle with a numerical finite-element approach. In this paper, we compute the entanglement entropy between two half-spaces resulting from a local quench, triggered by a local operator insertion in a CFT$_3$. We find that the growth of entanglement entropy at early time agrees with the prediction from the first law, as long as the conformal dimension $Delta$ of the local operator is small. Within the limited time region that we can probe numerically, we observe deviations from the first law and a transition to sub-linear growth at later time. In particular, the time dependence at large $Delta$ shows qualitative differences to the simple logarithmic time dependence familiar from the CFT$_2$ case. We hope that our work will motivate further studies, both numerical and analytical, on entanglement entropy in higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا