ترغب بنشر مسار تعليمي؟ اضغط هنا

HI filaments are cold and associated with dark molecular gas. HI4PI based estimates of the local diffuse CO-dark H2 distribution

225   0   0.0 ( 0 )
 نشر من قبل Peter Kalberla MW
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. There are significant amounts of H2 in the Milky Way. Due to its symmetry H2 does not radiate at radio frequencies. CO is thought to be a tracer for H2, however CO is formed at significantly higher opacities than H2. Thus, toward high Galactic latitudes significant amounts of H2 are hidden and called CO-dark. Aims. We demonstrate that the dust-to-gas ratio is a tool to identify locations and column densities of CO-dark H2. Methods. We adopt the hypothesis of a constant E(B-V)/NH ratio, independent of phase transitions from HI to H2. We investigate the Doppler temperatures TD, from a Gaussian decomposition of HI4PI data, to study temperature dependencies of E(B-V)/NHI. Results. The E(B-V)/NHI ratio in the cold HI gas phase is high in comparison to the warmer one. We consider this as evidence that cold HI gas toward high Galactic latitudes is associated with H2. Beyond CO-bright regions we find for TD < 1165 K a correlation (NHI + 2NH2 )/NHI prop -log T_D. In combination with a factor XCO = 4.0 10 20 cm^-2 (K km s^-1 )-1 this yields for the full-sky NH /E(B-V) sim 5.1 to 6.7 10^21 cm^-2 mag^-1, compatible with X-ray scattering and UV absorption line observations. Conclusions. Cold HI with T_D < 1165 K contains on average 46% CO-dark H2. Prominent filaments have TD < 220 K and typical excitation temperatures Tex sim 50 K. With a molecular gas fraction of > 61% they are dominated dynamically by H2.

قيم البحث

اقرأ أيضاً

LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary HI structures. The derived direction-dependent HI power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto hydrodynamical turbulence. Using the Galactic portion of the Effelsberg-Bonn HI Survey we continue our study of such anisotropies in the HI distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Apodizing the HI survey data by applying a rotational symmetric 50 percent Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We use a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. For the analyzed radio-polarimetric targets significant anisotropies are detected in the HI power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. HI anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Radio-polarimetric depolarization canals are associated with filamentary HI structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary HI structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other.
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit h $|v_{rm LSR}| < 25 $ kms$^{-1}$ on angular scales of 11 to 16. Unsharp masking (USM) is applied to extract small scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes $|b|>20^circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{rm HI} simeq 10^{19.1},{rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{rm HI} simeq 10^{20} {rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{rm tot} = (6.0 pm 1.8)mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is in the range $ 14 < n < 47 {rm cm^{-3}}$.
Determining the efficiency with which gas is converted into stars in galaxies requires an accurate determination of the total reservoir of molecular gas mass. However, despite being the most abundant molecule in the Universe, H$_2$ is challenging to detect through direct observations and indirect methods have to be used to estimate the total molecular gas reservoir. These are often based on scaling relations from tracers such as CO or dust, and are generally calibrated in the Milky Way. Yet, evidence that these scaling relations are environmentally dependent is growing. In particular, the commonly used CO-to-H$_2$ conversion factor (X$_{rm CO}$) is expected to be higher in metal-poor and/or strongly UV-irradiated environments. We use new SOFIA/FIFI-LS observations of far-infrared fine structure lines from the ionised and neutral gas and the Meudon photodissociation region model to constrain the physical properties and the structure of the gas in the massive star-forming region of 30 Doradus in the Large Magellanic Cloud, and determine the spatially resolved distribution of the total reservoir of molecular gas in the proximity of the young massive cluster R136. We compare this value with the molecular gas mass inferred from ground-based CO observations and dust-based estimates to quantify the impact of this extreme environment on commonly used tracers of the molecular gas. We find that the strong radiation field combined with the half-solar metallicity of the surrounding gas are responsible for a large reservoir of CO-dark molecular gas, leaving a large fraction of the total H$_2$ gas (> 75%) undetected when adopting a standard X$_{rm CO}$ factor in this massive star-forming region.
504 - P.M.W. Kalberla , U. Haud 2018
Context. A large fraction of the interstellar medium can be characterized as a multiphase medium. The neutral hydrogen gas is bistable with a cold and warm neutral medium (CNM and WNM respectively) but there is evidence for an additional phase at int ermediate temperatures, a lukewarm neutral medium (LNM) that is thermally unstable. Aims. We use all sky data from the HI4PI survey to separate these neutral HI phases with the aim to determine their distribution and phase fractions in the local interstellar medium. Methods. HI4PI observations, gridded on an nside = 1024 HEALPix grid, were decomposed into Gaussian components. From the frequency distribution of the velocity dispersions we infer three separate linewidth regimes. Accordingly we extract the HI line emission corresponding to the CNM, LNM, and WNM. We generated all-sky maps of these phases in the local HI gas with -8 < v_LSR < 8 km/s. Results. Each of the HI phases shows distinct structures on all scales. The LNM never exists as a single phase but contributes on average 41% of the HI. The CNM is prominent only for 22% of the sky, contributes there on average 34% but locally up to 60% of the HI and is associated with dust at temperatures T_dust ~ 18.6 K. Embedded cold filaments show a clear anti-correlation between CNM and LNM. Also the smoothly distributed WNM is anti-correlated with the CNM. It contributes for the rest of the sky 39% with dust associated at temperatures T_dust ~ 19.4 K. Conclusions. The CNM in filaments exists on small scales. Here the observed anti-correlation between LNM and CNM implies that both, filaments and the surrounding more extended LNM, must have a common origin.
While the CO(1-0) transition is often used to deduce the total molecular hydrogen in galaxies, it is challenging to detect in low metallicity galaxies, in spite of the star formation taking place. In contrast, the [CII] 158 micron line is relatively bright, highlighting a potentially important reservoir of H2 that is not traced by CO(1-0), but residing in the C+ - emitting regions. We explore a method to quantify the total H2 mass (MH2) in galaxies and learn what parameters control the CO-dark gas reservoir. We present Cloudy grids of density, radiation field and metallicity in terms of observed quantities, such as [OI], [CI], CO(1-0), [CII], total infrared luminosity and the total MH2 and provide recipes based on these models to derive total MH2 mass estimates from observations. The models are applied to the Herschel Dwarf Galaxy Survey, extracting the total MH2 for each galaxy which is compared to the H2 determined from the observed CO(1-0) line. While the H2 traced by CO(1-0) can be negligible, the [CII] 158 micron line can trace the total H2. 70% to 100% of the total H2 mass is not traced by CO(1-0) in the dwarf galaxies, but is well-traced by [CII] 158 micron line. The CO-dark gas mass fraction correlates with the observed L[CII]/LCO(1-0) ratio. A conversion factor for [CII] luminosity to total H2 and a new CO-to-total-MH2 conversion factor, as a function of metallicity, is presented. A recipe is provided to quantify the total mass of H2 in galaxies, taking into account the CO and [CII] observations. Accounting for this CO-dark H2 gas, we find that the star forming dwarf galaxies now fall on the Schmidt-Kennicutt relation. Their star-forming efficiency is rather normal, since the reservoir from which they form stars is now more massive when introducing the [CII] measures of the total H2, compared to the little amount of H2 in the CO-emitting region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا