ﻻ يوجد ملخص باللغة العربية
LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary HI structures. The derived direction-dependent HI power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto hydrodynamical turbulence. Using the Galactic portion of the Effelsberg-Bonn HI Survey we continue our study of such anisotropies in the HI distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Apodizing the HI survey data by applying a rotational symmetric 50 percent Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We use a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. For the analyzed radio-polarimetric targets significant anisotropies are detected in the HI power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. HI anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Radio-polarimetric depolarization canals are associated with filamentary HI structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary HI structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other.
Context. There are significant amounts of H2 in the Milky Way. Due to its symmetry H2 does not radiate at radio frequencies. CO is thought to be a tracer for H2, however CO is formed at significantly higher opacities than H2. Thus, toward high Galact
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit
We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of th
We report the radio detection of a shell-like HI structure in proximity to, and probably associated with, the nova V458 Vul. High spectral resolution observation with the Giant Metrewave Radio Telescope has made it possible to study the detailed kine
We use data on extreme radio scintillation to demonstrate that this phenomenon is associated with hot stars in the solar neighbourhood. The ionized gas responsible for the scattering is found at distances up to 1.75pc from the host star, and on avera