ﻻ يوجد ملخص باللغة العربية
The decline in abundance of Lyman-$alpha$ (Ly$alpha$) emitting galaxies at $z gtrsim 6$ is a powerful and commonly used probe to constrain the progress of cosmic reionization. We use the CoDaII simulation, which is a radiation hydrodynamic simulation featuring a box of $sim 94$ comoving Mpc side length, to compute the Ly$alpha$ transmission properties of the intergalactic medium (IGM) at $zsim 5.8$ to $7$. Our results mainly confirm previous studies, i.e., we find a declining Ly$alpha$ transmission with redshift and a large sightline-to-sightline variation. However, motivated by the recent discovery of blue Ly$alpha$ peaks at high redshift, we also analyze the IGM transmission on the blue side, which shows a rapid decline at $zgtrsim 6$ of the blue transmission. This low transmission can be attributed not only to the presence of neutral regions but also to the residual neutral hydrogen within ionized regions, for which a density even as low as $n_{rm HI}sim 10^{-9},mathrm{cm}^{-3}$ (sometimes combined with kinematic effects) leads to a significantly reduced visibility. Still, we find that $sim 5%$ of sightlines towards $M_{mathrm{1600AB}}sim -21$ galaxies at $zsim 7$ are transparent enough to allow a transmission of a blue Ly$alpha$ peak. We discuss our results in the context of the interpretation of observations.
The intergalactic medium (IGM) prior to the epoch of reionization consists mostly of neutral hydrogen gas. Ly-alpha photons produced by early stars resonantly scatter off hydrogen atoms, causing energy exchange between the radiation field and the gas
In the near future galaxy surveys will target Lyman alpha emitting galaxies (LAEs) to unveil the nature of the dark energy. It has been suggested that the observability of LAEs is coupled to the large scale properties of the intergalactic medium. Suc
Using the CoDaII simulation, we study the Ly$alpha$ transmissivity of the intergalactic medium (IGM) during reionization. At $z>6$, a typical galaxy without an active galactic nuclei fails to form a proximity zone around itself due to the overdensity
Tidal debris which are rich in HI gas, formed in interacting and merging systems, are suitable laboratories to study star formation outside galaxies. Recently, several such systems were observed, which contained many young star forming regions outsid
The intergalactic medium (IGM) is the dominant reservoir of baryons at all cosmic epochs. We investigate the evolution of the IGM from z=2-0 in 48 Mpc/h, 110-million particle cosmological hydrodynamic simulations using three prescriptions for galacti