ﻻ يوجد ملخص باللغة العربية
Using the CoDaII simulation, we study the Ly$alpha$ transmissivity of the intergalactic medium (IGM) during reionization. At $z>6$, a typical galaxy without an active galactic nuclei fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extends to the red side of Ly$alpha$, suppressing the transmission up to roughly the circular velocity of the galaxy. In some sightlines, an optically thin blob generated by a supernovae in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Red-ward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger HII regions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The HII regions are highly nonspherical, causing both sightline-to-sightline and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within HII regions strongly attenuate the emission for certain sightlines. All these factors adds to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies with $M_{rm UV}ge-21$ at $zge7$, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy.
The decline in abundance of Lyman-$alpha$ (Ly$alpha$) emitting galaxies at $z gtrsim 6$ is a powerful and commonly used probe to constrain the progress of cosmic reionization. We use the CoDaII simulation, which is a radiation hydrodynamic simulation
We present spectroscopic observations of six high redshift ($z_{rm em}$ $>$ 2) quasars, which have been selected for their Lyman $alpha$ (Ly$alpha$) emission region being only partially covered by a strong proximate ($z_{rm abs}$ $sim$ $z_{rm em}$) c
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(
We compare a sample of five high-resolution, high S/N Ly$alpha$ forest spectra of bright $6<z lesssim 6.5$ QSOs aimed at spectrally resolving the last remaining transmission spikes at $z>5$ with those obtained from mock absorption spectra from the Sh
Tidal debris which are rich in HI gas, formed in interacting and merging systems, are suitable laboratories to study star formation outside galaxies. Recently, several such systems were observed, which contained many young star forming regions outsid