ﻻ يوجد ملخص باللغة العربية
Chest radiography is a general method for diagnosing a patients condition and identifying important information; therefore, radiography is used extensively in routine medical practice in various situations, such as emergency medical care and medical checkup. However, a high level of expertise is required to interpret chest radiographs. Thus, medical specialists spend considerable time in diagnosing such huge numbers of radiographs. In order to solve these problems, methods for generating findings have been proposed. However, the study of generating chest radiograph findings has primarily focused on the English language, and to the best of our knowledge, no studies have studied Japanese data on this subject. There are two challenges involved in generating findings in the Japanese language. The first challenge is that word splitting is difficult because the boundaries of Japanese word are not clear. The second challenge is that there are numerous orthographic variants. For deal with these two challenges, we proposed an end-to-end model that generates Japanese findings at the character-level from chest radiographs. In addition, we introduced the attention mechanism to improve not only the accuracy, but also the interpretation ability of the results. We evaluated the proposed method using a public dataset with Japanese findings. The effectiveness of the proposed method was confirmed using the Bilingual Evaluation Understudy score. And, we were confirmed from the generated findings that the proposed method was able to consider the orthographic variants. Furthermore, we confirmed via visual inspection that the attention mechanism captures the features and positional information of radiographs.
Purpose. Imaging plays an important role in assessing severity of COVID 19 pneumonia. However, semantic interpretation of chest radiography (CXR) findings does not include quantitative description of radiographic opacities. Most current AI assisted C
LSTMs and other RNN variants have shown strong performance on character-level language modeling. These models are typically trained using truncated backpropagation through time, and it is common to assume that their success stems from their ability t
We explore the suitability of self-attention models for character-level neural machine translation. We test the standard transformer model, as well as a novel variant in which the encoder block combines information from nearby characters using convol
Background and Objective: The new type of coronavirus is also called COVID-19. It began to spread at the end of 2019 and has now spread across the world. Until October 2020, It has infected around 37 million people and claimed about 1 million lives.
This article provides an interesting exploration of character-level convolutional neural network solving Chinese corpus text classification problem. We constructed a large-scale Chinese language dataset, and the result shows that character-level conv