ﻻ يوجد ملخص باللغة العربية
The photon emission by an ultrarelativistic charged particle in extremely strong magnetic field is analyzed, with vacuum polarization and photon recoil taken into account. The vacuum polarization is treated phenomenologically via refractive index. The photon emission occurs in the synergic (cooperative) synchrotron-Cherenkov process [J. Schwinger, W. Tsai and T. Erber, Annals of Physics, 96 303 (1976)] which is similar to the synchrotron emission rather than to the Cherenkov one. For electrons, the effect of the vacuum polarization on the emission spectrum is not evident even beyond the probable onset of non-perturbative quantum electrodynamics (QED). However, the effect of the vacuum polarization on the emission spectrum can be observable for muons already at $gamma B / B_S approx 30$, with $gamma$ the muon Lorentz factor, $B$ the magnetic field strength and $B_S$ the critical QED field. Nevertheless, vacuum polarization leads to only 10% enhancement of the maximum of the radiation spectrum.
This work reviews our current understanding of Cherenkov-type processes in vacuum that may occur due to a possible violation of Lorentz invariance. The description of Lorentz violation is based on the Standard Model Extension (SME). To get an overvie
We study the Cherenkov effect in the context of the Maxwell-Chern-Simons (MCS) limit of the Standard Model Extension. We present a method to determine the exact radiation rate for a point charge.
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w
A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and
Since the first vacuum tube (X-ray tube) was invented by Wilhelm Rontgen in Germany, after more than one hundred years of development, the average power density of the vacuum tube microwave source has reached the order of 108 [MW][GHz]2. In the high-