ﻻ يوجد ملخص باللغة العربية
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, whereas the second one does. A r{e}sum{e} will be given of the decay rates for these processes and their properties.
This work reviews our current understanding of Cherenkov-type processes in vacuum that may occur due to a possible violation of Lorentz invariance. The description of Lorentz violation is based on the Standard Model Extension (SME). To get an overvie
The emission of electromagnetic radiation by charges moving uniformly in a Lorentz-violating vacuum is studied. The analysis is performed within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME) and confirms the possibili
The current paper is a technical work that is focused on Lorentz violation for Dirac fermions as well as neutrinos, described within the nonminimal Standard-Model Extension. We intend to derive two theoretical results. The first is the full propagato
Lorentz-violating neutrino parameters have been severely constrained on the basis of astrophysical considerations. In the high-energy limit, one generally assumes a superluminal dispersion relation of an incoming neutrino of the form E ~ |p|v, where
We compute the full vacuum polarization tensor in the minimal QED extension. We find that its low-energy limit is dominated by the radiatively induced Chern-Simons-like term and the high-energy limit is dominated by the c-type coefficients. We invest