ﻻ يوجد ملخص باللغة العربية
We describe an algorithm for the application of the forward and inverse spherical harmonic transforms. It is based on a new method for rapidly computing the forward and inverse associated Legendre transforms by hierarchically applying the interpolative decomposition butterfly factorization (IDBF). Experimental evidence suggests that the total running time of our method -- including all necessary precomputations -- is $mathcal{O}(N^2 log^3(N))$, where $N$ is the order of the transform. This is nearly asymptotically optimal. Moreover, unlike existing algorithms which are asymptotically optimal or nearly so, the constant in the running time of our algorithm is small enough to make it competitive with state-of-the-art $mathcal{O}left(N^3right)$ methods at relatively small values of $N$. Numerical results are provided to demonstrate the effectiveness and numerical stability of the new framework.
This paper introduces a kernel-independent interpolative decomposition butterfly factorization (IDBF) as a data-sparse approximation for matrices that satisfy a complementary low-rank property. The IDBF can be constructed in $O(Nlog N)$ operations fo
This paper focuses on the fast evaluation of the matvec $g=Kf$ for $Kin mathbb{C}^{Ntimes N}$, which is the discretization of a multidimensional oscillatory integral transform $g(x) = int K(x,xi) f(xi)dxi$ with a kernel function $K(x,xi)=e^{2pii Phi(
Structured CNN designed using the prior information of problems potentially improves efficiency over conventional CNNs in various tasks in solving PDEs and inverse problems in signal processing. This paper introduces BNet2, a simplified Butterfly-Net
We propose a transform for signals defined on the sphere that reveals their localized directional content in the spatio-spectral domain when used in conjunction with an asymmetric window function. We call this transform the directional spatially loca
In this paper, we consider the tensor completion problem, which has many researchers in the machine learning particularly concerned. Our fast and precise method is built on extending the $L_{2,1}$-norm minimization and Qatar Riyal decomposition (LNM-