ﻻ يوجد ملخص باللغة العربية
Fe, Mg, and O are among the most abundant elements in terrestrial planets. While the behavior of the Fe-O, Mg-O, and Fe-Mg binary systems under pressure have been investigated, there are still very few studies of the Fe-Mg-O ternary system at relevant Earths core and super-Earths mantle pressures. Here, we use the adaptive genetic algorithm (AGA) to study ternary Fe$_x$Mg$_y$O$_z$ phases in a wide range of stoichiometries at 200 GPa and 350 GPa. We discovered three dynamically stable phases with stoichiometries FeMg$_2$O$_4$, Fe$_2$MgO$_4$, and FeMg$_3$O$_4$ with lower enthalpy than any known combination of Fe-Mg-O high-pressure compounds at 350 GPa. With the discovery of these phases, we construct the Fe-Mg-O ternary convex hull. We further clarify the composition- and pressure-dependence of structural motifs with the analysis of the AGA-found stable and metastable structures. Analysis of binary and ternary stable phases suggest that O, Mg, or both could stabilize a BCC iron alloy at inner core pressures.
The solid inner core of the Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. There have been a growing number of papers investigating C and H as possible
We report on the thermal and electrical conductivities of two liquid silicon-oxygen-iron mixtures (Fe$_{0.82}$Si$_{0.10}$O$_{0.08}$ and Fe$_{0.79}$Si$_{0.08}$O$_{0.13}$), representative of the composition of the Earths outer core at the relevant pres
The transport properties of iron under Earths inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions rem
Being a lithophile element at ambient pressure, magnesium is long believed to be immiscible with iron. A recent study by Gao et al. [1] showed that pressure turns magnesium into a siderophile element and can produce unconventional Fe-Mg compounds. He
The stability, structure and properties of carbonate minerals at lower mantle conditions has significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years, there has been signific