ﻻ يوجد ملخص باللغة العربية
Camera traps enable the automatic collection of large quantities of image data. Biologists all over the world use camera traps to monitor animal populations. We have recently been making strides towards automatic species classification in camera trap images. However, as we try to expand the geographic scope of these models we are faced with an interesting question: how do we train models that perform well on new (unseen during training) camera trap locations? Can we leverage data from other modalities, such as citizen science data and remote sensing data? In order to tackle this problem, we have prepared a challenge where the training data and test data are from different cameras spread across the globe. For each camera, we provide a series of remote sensing imagery that is tied to the location of the camera. We also provide citizen science imagery from the set of species seen in our data. The challenge is to correctly classify species in the test camera traps.
Camera traps enable the automatic collection of large quantities of image data. Ecologists use camera traps to monitor animal populations all over the world. In order to estimate the abundance of a species from camera trap data, ecologists need to kn
Hotel recognition is an important task for human trafficking investigations since victims are often photographed in hotel rooms. Identifying these hotels is vital to trafficking investigations since they can help track down current and future victims
Reliable pose estimation of uncooperative satellites is a key technology for enabling future on-orbit servicing and debris removal missions. The Kelvins Satellite Pose Estimation Challenge aims at evaluating and comparing monocular vision-based appro
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that w
In the last few years, we have witnessed a renewed and fast-growing interest in continual learning with deep neural networks with the shared objective of making current AI systems more adaptive, efficient and autonomous. However, despite the signific