ﻻ يوجد ملخص باللغة العربية
In the last few years, we have witnessed a renewed and fast-growing interest in continual learning with deep neural networks with the shared objective of making current AI systems more adaptive, efficient and autonomous. However, despite the significant and undoubted progress of the field in addressing the issue of catastrophic forgetting, benchmarking different continual learning approaches is a difficult task by itself. In fact, given the proliferation of different settings, training and evaluation protocols, metrics and nomenclature, it is often tricky to properly characterize a continual learning algorithm, relate it to other solutions and gauge its real-world applicability. The first Continual Learning in Computer Vision challenge held at CVPR in 2020 has been one of the first opportunities to evaluate different continual learning algorithms on a common hardware with a large set of shared evaluation metrics and 3 different settings based on the realistic CORe50 video benchmark. In this paper, we report the main results of the competition, which counted more than 79 teams registered, 11 finalists and 2300$ in prizes. We also summarize the winning approaches, current challenges and future research directions.
Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisi
Podcasts are spoken documents across a wide-range of genres and styles, with growing listenership across the world, and a rapidly lowering barrier to entry for both listeners and creators. The great strides in search and recommendation in research an
This is the proceedings of the Computer Vision for Agriculture (CV4A) Workshop that was held in conjunction with the International Conference on Learning Representations (ICLR) 2020. The Computer Vision for Agriculture (CV4A) 2020 workshop was sche
Federated learning (FL) allows a server to learn a machine learning (ML) model across multiple decentralized clients that privately store their own training data. In contrast with centralized ML approaches, FL saves computation to the server and does
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a seman