ﻻ يوجد ملخص باللغة العربية
Wavelets are well known for data compression, yet have rarely been applied to the compression of neural networks. This paper shows how the fast wavelet transform can be used to compress linear layers in neural networks. Linear layers still occupy a significant portion of the parameters in recurrent neural networks (RNNs). Through our method, we can learn both the wavelet bases and corresponding coefficients to efficiently represent the linear layers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks. Wavelet optimization adds basis flexibility, without large numbers of extra weights. Source code is available at https://github.com/v0lta/Wavelet-network-compression.
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different
The compression of deep neural networks (DNNs) to reduce inference cost becomes increasingly important to meet realistic deployment requirements of various applications. There have been a significant amount of work regarding network compression, whil
Many DNN-enabled vision applications constantly operate under severe energy constraints such as unmanned aerial vehicles, Augmented Reality headsets, and smartphones. Designing DNNs that can meet a stringent energy budget is becoming increasingly imp
In this work, we propose an effective scheme (called DP-Net) for compressing the deep neural networks (DNNs). It includes a novel dynamic programming (DP) based algorithm to obtain the optimal solution of weight quantization and an optimization proce
To use neural networks in safety-critical settings it is paramount to provide assurances on their runtime operation. Recent work on ReLU networks has sought to verify whether inputs belonging to a bounded box can ever yield some undesirable output. I