ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate operator unravelling for open quantum system dynamics

57   0   0.0 ( 0 )
 نشر من قبل Andrea Smirne
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic methods with quantum jumps are often used to solve open quantum system dynamics. Moreover, they provide insight into fundamental topics, as the role of measurements in quantum mechanics and the description of non-Markovian memory effects. However, there is no unified framework to use quantum jumps to describe open system dynamics in any regime. We solve this issue by developing the Rate Operator Quantum Jump (ROQJ) approach. The method not only applies to both Markovian and non-Markovian evolutions, but also allows us to unravel master equations for which previous methods do not work. In addition, ROQJ yields a rigorous measurement-scheme interpretation for a wide class of dynamics, including a set of master equations with negative decay rates, and sheds light on different types of memory effects which arise when using stochastic quantum jump methods.



قيم البحث

اقرأ أيضاً

125 - Bassano Vacchini 2019
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma rkovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with sy stem--environment correlations included. This exact dynamics is in the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For explicit calculations, we also develop a weak-correlation expansion formalism that allows us to perform systematic perturbative approximations. This expansion provides approximate master equations which can feature advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master equation, which is different from existing approaches. We compare our equations with corresponding standard weak-coupling equations by two examples, where our correlation picture formalism is more accurate, or at least as accurate as weak-coupling equations.
We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature re servoir. We demonstrate that Landauers principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
86 - Bassano Vacchini 2016
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochas tic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.
Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention is paid to the unitary evolution of cl osed quantum systems, dissipation and noise are vital in understanding the dynamics of practical quantum systems. In this work, we experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment with the assistance of a single ancillary qubit. By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized, and its application in error mitigation is demonstrated by adjusting the simulated noise intensities. High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy. Our results represent a significant step towards hardware-efficient simulation of open quantum systems and error mitigation in quantum algorithms in noisy intermediate-scale quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا