ﻻ يوجد ملخص باللغة العربية
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochastic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma
We develop a theory to describe dynamics of a non-stationary open quantum system interacting with a hybrid environment, which includes high-frequency and low-frequency noise components. One part of the system-bath interaction is treated in a perturba
We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature re
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with sy