ﻻ يوجد ملخص باللغة العربية
We are concerned with multiple test problems with composite null hypotheses and the estimation of the proportion $pi_{0}$ of true null hypotheses. The Schweder-Spjo tvoll estimator $hat{pi}_0$ utilizes marginal $p$-values and only works properly if the $p$-values that correspond to the true null hypotheses are uniformly distributed on $[0,1]$ ($mathrm{Uni}[0,1]$-distributed). In the case of composite null hypotheses, marginal $p$-values are usually computed under least favorable parameter configurations (LFCs). Thus, they are stochastically larger than $mathrm{Uni}[0,1]$ under non-LFCs in the null hypotheses. When using these LFC-based $p$-values, $hat{pi}_0$ tends to overestimate $pi_{0}$. We introduce a new way of randomizing $p$-values that depends on a tuning parameter $cin[0,1]$, such that $c=0$ and $c=1$ lead to $mathrm{Uni}[0,1]$-distributed $p$-values, which are independent of the data, and to the original LFC-based $p$-values, respectively. For a certain value $c=c^{star}$ the bias of $hat{pi}_0$ is minimized when using our randomized $p$-values. This often also entails a smaller mean squared error of the estimator as compared to the usage of the LFC-based $p$-values. We analyze these points theoretically, and we demonstrate them numerically in computer simulations under various standard statistical models.
We are concerned with testing replicability hypotheses for many endpoints simultaneously. This constitutes a multiple test problem with composite null hypotheses. Traditional $p$-values, which are computed under least favourable parameter configurati
Many statistical methods have been proposed for variable selection in the past century, but few balance inference and prediction tasks well. Here we report on a novel variable selection approach called Penalized regression with Second-Generation P-Va
Verifying that a statistically significant result is scientifically meaningful is not only good scientific practice, it is a natural way to control the Type I error rate. Here we introduce a novel extension of the p-value - a second-generation p-valu
In the multivariate setting, defining extremal risk measures is important in many contexts, such as finance, environmental planning and structural engineering. In this paper, we review the literature on extremal bivariate return curves, a risk measur
We approach the problem of combining top-ranking association statistics or P-value from a new perspective which leads to a remarkably simple and powerful method. Statistical methods, such as the Rank Truncated Product (RTP), have been developed for c