ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Selection with Second-Generation P-Values

76   0   0.0 ( 0 )
 نشر من قبل Yi Zuo
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Many statistical methods have been proposed for variable selection in the past century, but few balance inference and prediction tasks well. Here we report on a novel variable selection approach called Penalized regression with Second-Generation P-Values (ProSGPV). It captures the true model at the best rate achieved by current standards, is easy to implement in practice, and often yields the smallest parameter estimation error. The idea is to use an l0 penalization scheme with second-generation p-values (SGPV), instead of traditional ones, to determine which variables remain in a model. The approach yields tangible advantages for balancing support recovery, parameter estimation, and prediction tasks. The ProSGPV algorithm can maintain its good performance even when there is strong collinearity among features or when a high dimensional feature space with p > n is considered. We present extensive simulations and a real-world application comparing the ProSGPV approach with smoothly clipped absolute deviation (SCAD), adaptive lasso (AL), and mini-max concave penalty with penalized linear unbiased selection (MC+). While the last three algorithms are among the current standards for variable selection, ProSGPV has superior inference performance and comparable prediction performance in certain scenarios. Supplementary materials are available online.

قيم البحث

اقرأ أيضاً

Verifying that a statistically significant result is scientifically meaningful is not only good scientific practice, it is a natural way to control the Type I error rate. Here we introduce a novel extension of the p-value - a second-generation p-valu e - that formally accounts for scientific relevance and leverages this natural Type I Error control. The approach relies on a pre-specified interval null hypothesis that represents the collection of effect sizes that are scientifically uninteresting or are practically null. The second-generation p-value is the proportion of data-supported hypotheses that are also null hypotheses. As such, second-generation p-values indicate when the data are compatible with null hypotheses, or with alternative hypotheses, or when the data are inconclusive. Moreover, second-generation p-values provide a proper scientific adjustment for multiple comparisons and reduce false discovery rates. This is an advance for environments rich in data, where traditional p-value adjustments are needlessly punitive. Second-generation p-values promote transparency, rigor and reproducibility of scientific results by a priori specifying which candidate hypotheses are practically meaningful and by providing a more reliable statistical summary of when the data are compatible with alternative or null hypotheses.
We consider the problem of variable selection in high-dimensional settings with missing observations among the covariates. To address this relatively understudied problem, we propose a new synergistic procedure -- adaptive Bayesian SLOPE -- which eff ectively combines the SLOPE method (sorted $l_1$ regularization) together with the Spike-and-Slab LASSO method. We position our approach within a Bayesian framework which allows for simultaneous variable selection and parameter estimation, despite the missing values. As with the Spike-and-Slab LASSO, the coefficients are regarded as arising from a hierarchical model consisting of two groups: (1) the spike for the inactive and (2) the slab for the active. However, instead of assigning independent spike priors for each covariate, here we deploy a joint SLOPE spike prior which takes into account the ordering of coefficient magnitudes in order to control for false discoveries. Through extensive simulations, we demonstrate satisfactory performance in terms of power, FDR and estimation bias under a wide range of scenarios. Finally, we analyze a real dataset consisting of patients from Paris hospitals who underwent a severe trauma, where we show excellent performance in predicting platelet levels. Our methodology has been implemented in C++ and wrapped into an R package ABSLOPE for public use.
We address the problem of dynamic variable selection in time series regression with unknown residual variances, where the set of active predictors is allowed to evolve over time. To capture time-varying variable selection uncertainty, we introduce ne w dynamic shrinkage priors for the time series of regression coefficients. These priors are characterized by two main ingredients: smooth parameter evolutions and intermittent zeroes for modeling predictive breaks. More formally, our proposed Dynamic Spike-and-Slab (DSS) priors are constructed as mixtures of two processes: a spike process for the irrelevant coefficients and a slab autoregressive process for the active coefficients. The mixing weights are themselves time-varying and depend on lagged values of the series. Our DSS priors are probabilistically coherent in the sense that their stationary distribution is fully known and characterized by spike-and-slab marginals. For posterior sampling over dynamic regression coefficients, model selection indicators as well as unknown dynamic residual variances, we propose a Dynamic SSVS algorithm based on forward-filtering and backward-sampling. To scale our method to large data sets, we develop a Dynamic EMVS algorithm for MAP smoothing. We demonstrate, through simulation and a topical macroeconomic dataset, that DSS priors are very effective at separating active and noisy coefficients. Our fast implementation significantly extends the reach of spike-and-slab methods to large time series data.
349 - Lu Zhang , Junwei Lu 2021
Variable selection on the large-scale networks has been extensively studied in the literature. While most of the existing methods are limited to the local functionals especially the graph edges, this paper focuses on selecting the discrete hub struct ures of the networks. Specifically, we propose an inferential method, called StarTrek filter, to select the hub nodes with degrees larger than a certain thresholding level in the high dimensional graphical models and control the false discovery rate (FDR). Discovering hub nodes in the networks is challenging: there is no straightforward statistic for testing the degree of a node due to the combinatorial structures; complicated dependence in the multiple testing problem is hard to characterize and control. In methodology, the StarTrek filter overcomes this by constructing p-values based on the maximum test statistics via the Gaussian multiplier bootstrap. In theory, we show that the StarTrek filter can control the FDR by providing accurate bounds on the approximation errors of the quantile estimation and addressing the dependence structures among the maximal statistics. To this end, we establish novel Cramer-type comparison bounds for the high dimensional Gaussian random vectors. Comparing to the Gaussian comparison bound via the Kolmogorov distance established by citet{chernozhukov2014anti}, our Cramer-type comparison bounds establish the relative difference between the distribution functions of two high dimensional Gaussian random vectors. We illustrate the validity of the StarTrek filter in a series of numerical experiments and apply it to the genotype-tissue expression dataset to discover central regulator genes.
We consider regression in which one predicts a response $Y$ with a set of predictors $X$ across different experiments or environments. This is a common setup in many data-driven scientific fields and we argue that statistical inference can benefit fr om an analysis that takes into account the distributional changes across environments. In particular, it is useful to distinguish between stable and unstable predictors, i.e., predictors which have a fixed or a changing functional dependence on the response, respectively. We introduce stabilized regression which explicitly enforces stability and thus improves generalization performance to previously unseen environments. Our work is motivated by an application in systems biology. Using multiomic data, we demonstrate how hypothesis generation about gene function can benefit from stabilized regression. We believe that a similar line of arguments for exploiting heterogeneity in data can be powerful for many other applications as well. We draw a theoretical connection between multi-environment regression and causal models, which allows to graphically characterize stable versus unstable functional dependence on the response. Formally, we introduce the notion of a stable blanket which is a subset of the predictors that lies between the direct causal predictors and the Markov blanket. We prove that this set is optimal in the sense that a regression based on these predictors minimizes the mean squared prediction error given that the resulting regression generalizes to unseen new environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا