ﻻ يوجد ملخص باللغة العربية
Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AutoVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speakers identity embedding to synthesize a new voice. However, we found that while speaker identity is disentangled from speech content, a significant amount of prosodic information, such as source F0, leaks through the bottleneck, causing target F0 to fluctuate unnaturally. Furthermore, AutoVC has no control of the converted F0 and thus unsuitable for many applications. In the paper, we modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time. Therefore, we can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity. We support our improvement through quantitative and qualitative analysis.
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a s
This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet
In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted
Voice conversion (VC) techniques aim to modify speaker identity of an utterance while preserving the underlying linguistic information. Most VC approaches ignore modeling of the speaking style (e.g. emotion and emphasis), which may contain the factor
We propose a flexible framework for spectral conversion (SC) that facilitates training with unaligned corpora. Many SC frameworks require parallel corpora, phonetic alignments, or explicit frame-wise correspondence for learning conversion functions o