ﻻ يوجد ملخص باللغة العربية
Suspensions of rear- and front-actuated microswimmers immersed in a fluid, known respectively as ``pushers and ``pullers, display qualitatively different collective behaviours: beyond a characteristic density, pusher suspensions exhibit a hydrodynamic instability leading to collective motion known as active turbulence, a phenomenon which is absent for pullers. In this Letter, we describe the collective dynamics of a binary pusher--puller mixture using kinetic theory and large-scale particle-resolved simulations. We derive and verify an instability criterion, showing that the critical density for active turbulence moves to higher values as the fraction $chi$ of pullers is increased and disappears for $chi geq 0.5$. We then show analytically and numerically that the two-point hydrodynamic correlations of the 1:1 mixture are equal to those of a suspension of noninteracting swimmers. Strikingly, our numerical analysis furthermore shows that the full probability distribution of the fluid velocity fluctuations collapses onto the one of a noninteracting system at the same density, where swimmer--swimmer correlations are strictly absent. Our results thus indicate that the fluid velocity fluctuations in 1:1 pusher--puller mixtures are exactly equal to those of the corresponding noninteracting suspension at any density, a surprising cancellation with no counterpart in equilibrium long-range interacting systems.
Multispecies swarms are found for microorganisms living in microfluidic environments where they can take advantage of collective motions during transport and spreading. Nevertheless, there is a general lack of physical understandings of the origins o
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic propertie
We present a comprehensive theory of the dynamics and fluctuations of a two-dimensional suspension of polar active particles in an incompressible fluid confined to a substrate. We show that, depending on the sign of a single parameter, a state with p
In this Letter, we study the collective behaviour of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedently large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that,
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the