ترغب بنشر مسار تعليمي؟ اضغط هنا

Peak-structure in self-energy of cuprate superconductors

138   0   0.0 ( 0 )
 نشر من قبل Shiping Feng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently deduced normal and anomalous self-energies from photoemission spectra of cuprate superconductors via the machine learning technique are calling for an explanation. Here the normal and anomalous self-energies in cuprate superconductors are analyzed within the framework of the kinetic-energy-driven superconductivity. It is shown that the exchanged spin excitations give rise to the well-pronounced low-energy peak-structures in both the normal and anomalous self-energies, however, they do not cancel in the total self-energy. In particular, the peak-structure in the normal self-energy is mainly responsible for the peak-dip-hump structure in the single-particle excitation spectrum, and can persist into the normal-state, while the sharp peak in the anomalous self-energy gives rise to a crucial contribution to the superconducting gap, and vanishes in the normal-state. Moreover, the evolution of the peak-structure with doping and momentum are also analyzed.



قيم البحث

اقرأ أيضاً

In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as the gauge invariant dressed holon and spin. In particular, we show that under the decoupling scheme, the charge-spin separation fermion-spin representation is a natural representation of the constrained electron defined in a restricted Hilbert space without double electron occupancy. Based on the charge-spin separation fermion-spin theory, we have developed the kinetic energy driven superconducting mechanism, where the superconducting state is controlled by both superconducting gap parameter and quasiparticle coherence. Within this kinetic energy driven superconductivity, we have discussed the low energy electronic structure of the single layer and bilayer cuprate superconductors in both superconducting and normal states, and qualitatively reproduced all main features of the angle-resolved photoemission spectroscopy measurements on the single layer and bilayer cuprate superconductors. We show that the superconducting state in cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like with the d-wave symmetry, so that the basic Bardeen-Cooper-Schrieffer formalism with the d-wave gap function is still valid in discussions of the low energy electronic structure of cuprate superconductors, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations. We also show that the well pronounced peak-dip-hump structure of the bilayer cuprate superconductors in the superconducting state and double-peak structure in the normal state are mainly caused by the bilayer splitting.
The spectral energy gap is an important signature that defines states of quantum matter: insulators, density waves, and superconductors have very different gap structures. The momentum resolved nature of angle-resolved photoemission spectroscopy (ARP ES) makes it a powerful tool to characterize spectral gaps. ARPES has been instrumental in establishing the anisotropic d-wave structure of the superconducting gap in high-transition temperature (Tc) cuprates, which is different from the conventional isotropic s-wave superconducting gap. Shortly afterwards, ARPES demonstrated that an anomalous gap above Tc, often termed the pseudogap, follows a similar anisotropy. The nature of this poorly understood pseudogap and its relationship with superconductivity has since become the focal point of research in the field. To address this issue, the momentum, temperature, doping, and materials dependence of spectral gaps have been extensively examined with significantly improved instrumentation and carefully matched experiments in recent years. This article overviews the current understanding and unresolved issues of the basic phenomenology of gap hierarchy. We show how ARPES has been sensitive to phase transitions, has distinguished between orders having distinct broken electronic symmetries, and has uncovered rich momentum and temperature dependent fingerprints reflecting an intertwined & competing relationship between the ordered states and superconductivity that results in multiple phenomenologically-distinct ground states inside the superconducting dome. These results provide us with microscopic insights into the cuprate phase diagram.
66 - A. Tsukada 2005
High-temperature superconductivity has been discovered in La2-xBaxCuO4 [1], a compound that derives from the undoped La2CuO4 crystallizing in the perovskite T-structure. In this structure oxygen octahedra surround the copper ions. It is common knowle dge that charge carriers induced by doping in such an undoped antiferromagnetic Mott-insulator lead to high-temperature superconductivity [2- 4]. The undoped material La2CuO4 is also the basis of the electron-doped cuprate superconductors [5] of the form La2-xCexCuO4+y [6,7] which however crystallize in the so called T-prime-structure, i.e. without apical oxygen above or below the copper ions of the CuO2-plane. It is well known that for La2-xCexCuO4+y the undoped T-prime-structure parent compound cannot be prepared due to the structural phase transition back into the T-structure occuring around x ~ 0.05. Here, we report that if La is substituted by RE = Y, Lu, Sm, Eu, Gd, or Tb, which have smaller ionic radii but have the same valence as La, nominally undoped La2-xRExCuO4 can be synthesized by molecular beam epitaxy in the T-prime-structure. The second important result is that all these new T-prime-compounds are superconductors with fairly high critical temperatures up to 21 K. For this new class of cuprates La2-xRExCuO4, which forms the T-prime-parent compounds of the La-based electron doped cuprates, we have not been able to obtain the Mott-insulating ground state for small x before the structural phase transition into the T-structure takes place.
157 - D. X. Yao , E. W. Carlson 2008
Checkerboard patterns have been proposed in order to explain STM experiments on the cuprates BSCCO and Na-CCOC. However the presence of these patterns has not been confirmed by a bulk probe such as neutron scattering. In particular, simple checkerboa rd patterns are inconsistent with neutron scattering data, in that they have low energy incommsensurate (IC) spin peaks rotated 45 degrees from the direction of the charge IC peaks. However, it is unclear whether other checkerboard patterns can solve the problem. In this paper, we have studied more complicated checkerboard patterns (modulated checkerboards) by using spin wave theory and analyzed noncollinear checkerboards as well. We find that the high energy response of the modulated checkerboards is inconsistent with neutron scattering results, since they fail to exhibit a resonance peak at (pi,pi), which has recently been shown to be a universal feature of cuprate superconductors. We further argue that the newly proposed noncollinear checkerboard also lacks a resonance peak. We thus conclude that to date no checkerboard pattern has been proposed which satisfies both the low energy constraints and the high energy constraints imposed by the current body of experimental data in cuprate superconductors.
A residual linear term is observed in the thermal conductivity of optimally-doped Bi-2212 at very low temperatures whose magnitude is in excellent agreement with the value expected from Fermi-liquid theory and the d-wave energy spectrum measured by p hotoemission spectroscopy, with no adjustable parameters. This solid basis allows us to make a quantitative analysis of thermodynamic properties at low temperature and establish that thermally-excited quasiparticles are a significant, perhaps even the dominant mechanism in suppressing the superfluid density in cuprate superconductors Bi-2212 and YBCO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا