ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Energy Quasiparticles in Cuprate Superconductors: A Quantitative Analysis

68   0   0.0 ( 0 )
 نشر من قبل Louis Taillefer
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A residual linear term is observed in the thermal conductivity of optimally-doped Bi-2212 at very low temperatures whose magnitude is in excellent agreement with the value expected from Fermi-liquid theory and the d-wave energy spectrum measured by photoemission spectroscopy, with no adjustable parameters. This solid basis allows us to make a quantitative analysis of thermodynamic properties at low temperature and establish that thermally-excited quasiparticles are a significant, perhaps even the dominant mechanism in suppressing the superfluid density in cuprate superconductors Bi-2212 and YBCO.

قيم البحث

اقرأ أيضاً

137 - Yiqun Liu , Yu Lan , 2020
The recently deduced normal and anomalous self-energies from photoemission spectra of cuprate superconductors via the machine learning technique are calling for an explanation. Here the normal and anomalous self-energies in cuprate superconductors ar e analyzed within the framework of the kinetic-energy-driven superconductivity. It is shown that the exchanged spin excitations give rise to the well-pronounced low-energy peak-structures in both the normal and anomalous self-energies, however, they do not cancel in the total self-energy. In particular, the peak-structure in the normal self-energy is mainly responsible for the peak-dip-hump structure in the single-particle excitation spectrum, and can persist into the normal-state, while the sharp peak in the anomalous self-energy gives rise to a crucial contribution to the superconducting gap, and vanishes in the normal-state. Moreover, the evolution of the peak-structure with doping and momentum are also analyzed.
The spectral energy gap is an important signature that defines states of quantum matter: insulators, density waves, and superconductors have very different gap structures. The momentum resolved nature of angle-resolved photoemission spectroscopy (ARP ES) makes it a powerful tool to characterize spectral gaps. ARPES has been instrumental in establishing the anisotropic d-wave structure of the superconducting gap in high-transition temperature (Tc) cuprates, which is different from the conventional isotropic s-wave superconducting gap. Shortly afterwards, ARPES demonstrated that an anomalous gap above Tc, often termed the pseudogap, follows a similar anisotropy. The nature of this poorly understood pseudogap and its relationship with superconductivity has since become the focal point of research in the field. To address this issue, the momentum, temperature, doping, and materials dependence of spectral gaps have been extensively examined with significantly improved instrumentation and carefully matched experiments in recent years. This article overviews the current understanding and unresolved issues of the basic phenomenology of gap hierarchy. We show how ARPES has been sensitive to phase transitions, has distinguished between orders having distinct broken electronic symmetries, and has uncovered rich momentum and temperature dependent fingerprints reflecting an intertwined & competing relationship between the ordered states and superconductivity that results in multiple phenomenologically-distinct ground states inside the superconducting dome. These results provide us with microscopic insights into the cuprate phase diagram.
Despite immense efforts, the cuprate Fermi surface (FS) has been unambiguously determined in only two distinct, low-temperature regions of the phase diagram: a large hole-like FS at high doping, and a small electron-like pocket associated with charge -density-wave driven FS reconstruction at moderate doping. Moreover, there exists incomplete understanding of the reconstructed state, which is stabilized by high magnetic fields, and its connection with the normal state that consists of arc-like remnants of the large underlying FS. Part of the problem is that compound-specific idiosyncrasies, such as disorder effects and low structural symmetry, can obscure the fundamental properties of the quintessential CuO$_2$ planes. Here we present planar magnetotransport measurements for moderately-doped HgBa$_2$CuO$_{4+{delta}}$ that enable a quantitative understanding of the phase transition between the normal and reconstructed states and of the charge transport in the latter, and that demonstrate that the quasiparticle scattering rate in both states is due to Umklapp scattering. Building on prior insights, we furthermore arrive at a comprehensive understanding of the evolution of the planar transport properties throughout the entire cuprate phase diagram.
In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as the gauge invariant dressed holon and spin. In particular, we show that under the decoupling scheme, the charge-spin separation fermion-spin representation is a natural representation of the constrained electron defined in a restricted Hilbert space without double electron occupancy. Based on the charge-spin separation fermion-spin theory, we have developed the kinetic energy driven superconducting mechanism, where the superconducting state is controlled by both superconducting gap parameter and quasiparticle coherence. Within this kinetic energy driven superconductivity, we have discussed the low energy electronic structure of the single layer and bilayer cuprate superconductors in both superconducting and normal states, and qualitatively reproduced all main features of the angle-resolved photoemission spectroscopy measurements on the single layer and bilayer cuprate superconductors. We show that the superconducting state in cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like with the d-wave symmetry, so that the basic Bardeen-Cooper-Schrieffer formalism with the d-wave gap function is still valid in discussions of the low energy electronic structure of cuprate superconductors, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations. We also show that the well pronounced peak-dip-hump structure of the bilayer cuprate superconductors in the superconducting state and double-peak structure in the normal state are mainly caused by the bilayer splitting.
Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features o f the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا