ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of $Delta$ excitations in medium-mass nuclei with peripheral heavy ion charge-exchange reactions

120   0   0.0 ( 0 )
 نشر من قبل Jose Luis Rodr\\'iguez-S\\'anchez
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Isobaric single charge-exchange reactions, changing nuclear charges by one unit but leaving the mass partitions unaffected, have been for the first time investigated by peripheral collisions of $^{112}$Sn ions accelerated up to 1textit{A} GeV at the GSI facilities. The high-resolving power of the FRS spectrometer allows us to obtain $(p, n)$-type isobaric charge-exchange cross sections with an uncertainty of $3.5%$ and to separate quasi-elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component is associated to the excitation of the $Delta$(1232) isobar resonance and the emission of pions in s-wave both in the target and projectile nucleus, while the quasi-elastic contribution is associated to the nuclear spin-isospin response of nucleon-hole excitations. An apparent shift of the $Delta$-resonance peak of $sim$63 MeV is observed when comparing the missing-energy spectra obtained from the measurements with proton and carbon targets. A detailed analysis, performed with a theoretical model for the reactions, indicates that this observation can be simply interpreted as a change in the relative magnitude between the contribution of the excitation of the resonance in the target and in the projectile.



قيم البحث

اقرأ أيضاً

The theoretical approach to a sequential heavy ion double charge exchange reaction is presented. A brief introduction into the formal theory of second-order nuclear reactions and their application to Double Single Charge Exchange (DSCE) reactions by distorted wave theory is given, thereby completing the theoretical background to our recent work [1]. Formally, the DSCE reaction amplitudes are shown to be separable into superpositions of distortion factors, accounting for initial and final state ion--ion interactions, and nuclear matrix elements. A broad space is given to the construction of nuclear DSCE response functions on the basis of polarization propagator theory. The nuclear response tensors resemble the nuclear matrix elements of $2 ubetabeta$ decay in structure but contain in general a considerable more complex multipole and spin structure. The QRPA theory is used to derive explicit expressions for nuclear matrix elements (NMEs). The differences between the NME of the first and the second interaction vertexes in a DSCE reaction is elucidated. Reduction schemes for the transition form factors are discussed by investigating the closure approximation and the momentum structure of form factors. DSCE unit strength cross sections are derived.
It was first noted during the 1970s that finite-range distorted wave Born approximation (FR-DWBA) calculations were unable satisfactorily to describe the shape of the angular distributions of many single-proton (and some single-neutron) transfer reac tions induced by heavy ions, with calculations shifted to larger angles by up to ~ 4 degrees compared with the data. These reactions exhibited a significant mismatch, either of the reaction Q value or the grazing angular momentum of the entrance and exit channels, and it was speculated that the inclusion of multi-step transfer paths via excited state(s) of the projectile and/or ejectile could compensate for the effect of this mismatch and yield good descriptions of the data by shifting the calculated peaks to smaller angles. However, to date this has not been explicitly demonstrated for many reactions. In this work we show that inclusion of the two-step transfer path via the 4.44-MeV 2+ excited state of the 12C projectile in coupled channel Born approximation calculations enables a good description of the 208Pb(12C,11B)209Bi single-proton stripping data at four incident energies which could not be described by the FR-DWBA. We also show that inclusion of a similar reaction path for the 208Pb(12C,13C)207Pb single-neutron pickup reaction has a relatively minor influence, slightly improving the already good description obtained with the FR-DWBA.
114 - Kenichi Yoshida 2020
Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic) dipole resonance (SDR). Purpose : I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic features as an isovector mode of excitation. Methods: The nuclear energy-density functional method is employed for calculating the response functions based on the Skyrme--Kohn--Sham--Bogoliubov method and the proton-neuton quasiparticle-random-phase approximation. Results: The deformation splitting into $K=0$ and $K=pm 1$ components occurs in the charge-changing channels and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of each $K$-component. A qualitative argument on the strength distributions for each component is given based on the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei. Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitions as in the neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in spherical systems.
118 - E. Simeckova , P. Bem , M. Honusek 2011
The activation cross sections of (d,p), (d,2n), (d,3n), and (d,2p) reactions on 63,65Cu were measured in the energy range from 4 to 20 MeV using the stacked-foils technique. Then, following the available elastic-scattering data analysis that provided the optical potential for reaction cross sections calculations, an increased effort has been devoted to the breakup mechanism, the direct reaction stripping, and the pre-equilibrium and compound-nucleus cross section calculations, corrected for the breakup and stripping decrease of the total reaction cross section. The overall agreement between the measured and calculated deuteron activation cross sections proves the correctness of the nuclear mechanisms account, next to the simultaneous analysis of the elastic-scattering and reaction data.
Single neutron- and proton-removal cross sections have been systematically measured for 72 medium-mass neutron-rich nuclei around Z=50 and energies around 900A MeV using the FRagment Separator (FRS) at GSI. Neutron-removal cross sections are describe d by considering the knock-out process together with initial- and final-state interactions. Proton-removal cross sections are, however, significantly smaller than predicted by the same calculations. The observed difference can be explained as due to the knockout of short-correlated protons in neutron-proton dominating pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا