ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-step stochastic mechanism of polarization reversal in rhombohedral ferroelectrics

73   0   0.0 ( 0 )
 نشر من قبل Yuri Genenko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stochastic model for the field-driven polarization reversal in rhombohedral ferroelectrics is developed, providing a description of their temporal electromechanical response. Application of the model to simultaneous measurements of polarization and strain kinetics in a rhombohedral Pb(Zr,Ti)O3 ceramic over a wide time window allows identification of preferable switching paths, fractions of individual switching processes, and their activation fields. Complementary, the phenomenological Landau-Ginzburg-Devenshire theory is used to analyze the impact of external field and stress on switching barriers showing that residual mechanical stress may promote the fast switching.



قيم البحث

اقرأ أيضاً

A stochastic model of electric field-driven polarization reversal in orthorhombic ferroelectrics is advanced, providing a description of their temporal electromechanical response. The theory accounts for all possible parallel and sequential switching events. Application of the model to the simultaneous measurements of polarization and strain kinetics in a lead-free orthorhombic (K,Na)NbO3-based ferroelectric ceramic over a wide timescale of 7 orders of magnitude allowed identification of preferable polarization switching paths, fractions of individual switching processes, and their activation fields. Particularly, the analysis revealed substantial contributions of coherent non-180{deg} switching events, which do not cause macroscopic strain and thus mimic 180{deg} switching processes.
Consecutive stochastic 90{deg} polarization switching events, clearly resolved in recent experiments, are described by a new nucleation and growth multi-step model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible c onsecutive 90{deg}- and parallel 180{deg}-switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb(Zr,Ti)O3 ceramic in a wide range of electric fields over a time domain of five orders of the magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.
A stochastic model for polarization switching in tetragonal ferroelectric ceramics is introduced, which includes sequential 90{deg}- and parallel 180{deg}-switching processes and accounts for the dispersion of characteristic switching times due to a nonuniform spatial distribution of the applied field. It presents merging of the recent multistep stochastic mechanism (MSM) with the earlier nucleation limited switching (NLS) and inhomogeneous field mechanism (IFM) models. The new model provides a much better description of simultaneous polarization and strain responses over a wide time window and a deeper insight into the microscopic switching mechanisms, as is exemplarily shown by comparison with measurements on lead zirconate titanate.
178 - Yanpeng Yao , Huaxiang Fu 2008
Using density-functional calculations we study the structure and polarization response of tetragonal PbTiO3, BaTiO3 and SrTiO3 in a strain regime that is previously overlooked. Different from common expectations, we find that the polarizations in all three substances saturate at large strains, demonstrating a universal phenomenon. The saturation is shown to originate from an unusual and strong electron-ion correlation that leads to cancellation between electronic and ionic polarizations. Our results shed new insight on the polarization properties, and reveal the existence of a fundamental limit to the strain-induced polarization enhancement.
The ability to manipulate ferroelectrics at ultrafast speeds has long been an elusive target for materials research. Coherently exciting the ferroelectric mode with ultrashort optical pulses holds the promise to switch the ferroelectric polarization on femtosecond timescale, two orders of magnitude faster compared to what is possible today with pulsed electric fields. Here, we report on the demonstration of ultrafast optical reversal of the ferroelectric polarization in LiNbO3. Rather than driving the ferroelectric mode directly, we couple to it indirectly by resonant excitation of an auxiliary high-frequency phonon mode with femtosecond mid-infrared pulses. Due to strong anharmonic coupling between these modes, the atoms are directionally displaced along the ferroelectric mode and the polarization is transiently reversed, as revealed by time-resolved, phase-sensitive second-harmonic generation. This reversal can be induced in both directions, a key pre-requisite for practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا