ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast reversal of the ferroelectric polarization

233   0   0.0 ( 0 )
 نشر من قبل Roman Mankowsky
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to manipulate ferroelectrics at ultrafast speeds has long been an elusive target for materials research. Coherently exciting the ferroelectric mode with ultrashort optical pulses holds the promise to switch the ferroelectric polarization on femtosecond timescale, two orders of magnitude faster compared to what is possible today with pulsed electric fields. Here, we report on the demonstration of ultrafast optical reversal of the ferroelectric polarization in LiNbO3. Rather than driving the ferroelectric mode directly, we couple to it indirectly by resonant excitation of an auxiliary high-frequency phonon mode with femtosecond mid-infrared pulses. Due to strong anharmonic coupling between these modes, the atoms are directionally displaced along the ferroelectric mode and the polarization is transiently reversed, as revealed by time-resolved, phase-sensitive second-harmonic generation. This reversal can be induced in both directions, a key pre-requisite for practical applications.

قيم البحث

اقرأ أيضاً

Weakly coupled ferroelectric/dielectric superlattice thin film heterostructures exhibit complex nanoscale polarization configurations that arise from a balance of competing electrostatic, elastic, and domain-wall contributions to the free energy. A k ey feature of these configurations is that the polarization can locally have a significant component that is not along the thin-film surface normal direction, while maintaining zero net in-plane polarization. PbTiO3/SrTiO3 thin-film superlattice heterostructures on a conducting SrRuO3 bottom electrode on SrTiO3 have a room-temperature stripe nanodomain pattern with nanometer-scale lateral period. Ultrafast time-resolved x-ray free electron laser diffraction and scattering experiments reveal that above-bandgap optical pulses induce rapidly propagating acoustic pulses and a perturbation of the domain diffuse scattering intensity arising from the nanoscale stripe domain configuration. With 400 nm optical excitation, two separate acoustic pulses are observed: a high-amplitude pulse resulting from strong optical absorption in the bottom electrode and a weaker pulse arising from the depolarization field screening effect due to absorption directly within the superlattice. The picosecond scale variation of the nanodomain diffuse scattering intensity is consistent with a larger polarization change than would be expected due to the polarization-tetragonality coupling of uniformly polarized ferroelectrics. The polarization change is consistent instead with polarization rotation facilitated by the reorientation of the in-plane component of the polarization at the domain boundaries of the striped polarization structure. The complex steady-state configuration within these ferroelectric heterostructures leads to polarization rotation phenomena that have been previously available only through the selection of bulk crystal composition.
The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO), PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via first-principles computational methods. The effects of epitaxial strain on the atomic structure, ferroelectric response, barrier to coherent domain reversal, domain-wall energy, and barrier to domain-wall translation are studied. It is found that PTO has a larger polarization, but smaller energy barrier to domain reversal, than PZO. Consequentially the idealized coercive field is over two times smaller in PTO than PZO. The Ti--O bond length is more sensitive to strain than the other bonds in the crystals. This results in the polarization and domain-wall energy in PTO having greater sensitivity to strain than in PZO. Two ordered phases of PZT are considered, the rock-salt structure and a (100) PTO/PZO superlattice. In these simple structures we find that the ferroelectric properties do not obey Vergards law, but instead can be approximated as an average over individual 5-atom unit cells.
Against expectations, robust switchable ferroelectricity has been recently observed in ultrathin (1 nm) ferroelectric films exposed to air [V. Garcia $et$ $al.$, Nature {bf 460}, 81 (2009)]. Based on first-principles calculations, we show that the sy stem does not polarize unless charged defects or adsorbates form at the surface. We propose electrochemical processes as the most likely origin of this charge. The ferroelectric polarization of the film adapts to the bound charge generated on its surface by redox processes when poling the film. This, in turn, alters the band alignment at the bottom electrode interface, explaining the observed tunneling electroresistance. Our conclusions are supported by energetics calculated for varied electrochemical scenarios.
Mobile charges and lattice polarization interact in ferroelectric materials because of the Coulomb interaction between the mobile free charges and the fixed lattice dipoles. We have investigated this mutual screening in KTiOPO4, a ferroelectric/super ionic single crystal in which the mobile charges are K+ ions. The ionic accumulation close to the crystal surfaces leads to orders of magnitude increase of the Second Harmonic Generation. This ionic space charge model is supported by the absence of such an effect in non-ionic conductor but ferroelectric BaTiO3, by its temperature dependence in KTiOPO4 and by its broad depletion at domain walls.
Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizin g field. Here we show using density functional theory that the presence of oxygen vacancies at the surface of BaTiO3 (001) preferentially stabilizes an inward pointing, P-, polarization. Mirror electron microscopy measurements of the domain ordering confirm the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا