ﻻ يوجد ملخص باللغة العربية
While recent models have achieved human-level scores on many NLP datasets, we observe that they are considerably sensitive to small changes in input. As an alternative to the standard approach of addressing this issue by constructing training sets of completely new examples, we propose doing so via minimal perturbation of examples. Specifically, our approach involves first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Local perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. To evaluate the impact of this phenomenon, we consider a recent question-answering dataset (BoolQ) and study the benefit of our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create, it is more effective to train models using them: such models exhibit higher robustness and better generalization, while retaining performance on the original BoolQ dataset.
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA)
While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method t
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce t
Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving